Suppr超能文献

基于多次测量的泊松率的极端压缩感知

Extreme Compressed Sensing of Poisson Rates from Multiple Measurements.

作者信息

Kota Pavan K, LeJeune Daniel, Drezek Rebekah A, Baraniuk Richard G

机构信息

Department of Bioengineering, Rice University, Houston, TX 77005 USA.

Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005 USA.

出版信息

IEEE Trans Signal Process. 2022;70:2388-2401. doi: 10.1109/tsp.2022.3172028. Epub 2022 May 3.

Abstract

Compressed sensing (CS) is a signal processing technique that enables the efficient recovery of a sparse high-dimensional signal from low-dimensional measurements. In the multiple measurement vector (MMV) framework, a set of signals with the same support must be recovered from their corresponding measurements. Here, we present the first exploration of the MMV problem where signals are independently drawn from a sparse, multivariate Poisson distribution. We are primarily motivated by a suite of biosensing applications of microfluidics where analytes (such as whole cells or biomarkers) are captured in small volume partitions according to a Poisson distribution. We recover the sparse parameter vector of Poisson rates through maximum likelihood estimation with our novel Sparse Poisson Recovery (SPoRe) algorithm. SPoRe uses batch stochastic gradient ascent enabled by Monte Carlo approximations of otherwise intractable gradients. By uniquely leveraging the Poisson structure, SPoRe substantially outperforms a comprehensive set of existing and custom baseline CS algorithms. Notably, SPoRe can exhibit high performance even with one-dimensional measurements and high noise levels. This resource efficiency is not only unprecedented in the field of CS but is also particularly potent for applications in microfluidics in which the number of resolvable measurements per partition is often severely limited. We prove the identifiability property of the Poisson model under such lax conditions, analytically develop insights into system performance, and confirm these insights in simulated experiments. Our findings encourage a new approach to biosensing and are generalizable to other applications featuring spatial and temporal Poisson signals.

摘要

压缩感知(CS)是一种信号处理技术,能够从低维测量中高效恢复稀疏高维信号。在多测量向量(MMV)框架中,必须从相应测量中恢复一组具有相同支撑集的信号。在此,我们首次探索了MMV问题,其中信号独立地从稀疏多元泊松分布中抽取。我们的主要动机来自于一系列微流控生物传感应用,其中分析物(如全细胞或生物标志物)根据泊松分布被捕获在小体积分区中。我们通过使用新颖的稀疏泊松恢复(SPoRe)算法进行最大似然估计来恢复泊松率的稀疏参数向量。SPoRe使用由难以处理的梯度的蒙特卡罗近似实现的批量随机梯度上升。通过独特地利用泊松结构,SPoRe显著优于一组全面的现有和定制基线CS算法。值得注意的是,即使在一维测量和高噪声水平下,SPoRe也能表现出高性能。这种资源效率不仅在CS领域是前所未有的,而且对于微流控应用特别有效,在微流控应用中每个分区可分辨测量的数量通常受到严重限制。我们证明了在这种宽松条件下泊松模型的可识别性,通过分析深入了解系统性能,并在模拟实验中证实了这些见解。我们的发现鼓励了一种新的生物传感方法,并且可以推广到其他具有空间和时间泊松信号的应用中。

相似文献

1
Extreme Compressed Sensing of Poisson Rates from Multiple Measurements.基于多次测量的泊松率的极端压缩感知
IEEE Trans Signal Process. 2022;70:2388-2401. doi: 10.1109/tsp.2022.3172028. Epub 2022 May 3.
2
Expanded Multiplexing on Sensor-Constrained Microfluidic Partitioning Systems.基于传感器受限微流控分区系统的扩展多重化
Anal Chem. 2023 Dec 5;95(48):17458-17466. doi: 10.1021/acs.analchem.3c01176. Epub 2023 Nov 16.
7
Sparse signal recovery methods for multiplexing PET detector readout.用于多路复用 PET 探测器读出的稀疏信号恢复方法。
IEEE Trans Med Imaging. 2013 May;32(5):932-42. doi: 10.1109/TMI.2013.2246182. Epub 2013 Feb 26.
9
Sparsity estimation from compressive projections via sparse random matrices.通过稀疏随机矩阵从压缩投影中进行稀疏性估计。
EURASIP J Adv Signal Process. 2018;2018(1):56. doi: 10.1186/s13634-018-0578-0. Epub 2018 Sep 10.

本文引用的文献

2
Droplet microfluidics: from proof-of-concept to real-world utility?微滴微流控技术:从概念验证到实际应用?
Chem Commun (Camb). 2019 Aug 28;55(67):9895-9903. doi: 10.1039/c9cc04750f. Epub 2019 Jul 23.
4
Super-multiplexed fluorescence microscopy via photostability contrast.通过光稳定性对比度实现的超多重荧光显微镜技术。
Biomed Opt Express. 2018 Jun 6;9(7):2943-2954. doi: 10.1364/BOE.9.002943. eCollection 2018 Jul 1.
5
Efficient Generation of Transcriptomic Profiles by Random Composite Measurements.通过随机复合测量高效生成转录组图谱
Cell. 2017 Nov 30;171(6):1424-1436.e18. doi: 10.1016/j.cell.2017.10.023. Epub 2017 Nov 16.
7
Digital Assays Part I: Partitioning Statistics and Digital PCR.数字分析方法第一部分:分区统计和数字 PCR。
SLAS Technol. 2017 Aug;22(4):369-386. doi: 10.1177/2472630317705680. Epub 2017 Apr 27.
9
Universal microbial diagnostics using random DNA probes.通用微生物诊断使用随机 DNA 探针。
Sci Adv. 2016 Sep 28;2(9):e1600025. doi: 10.1126/sciadv.1600025. eCollection 2016 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验