Yamac Mehmet, Ahishali Mete, Kiranyaz Serkan, Gabbouj Moncef
IEEE Trans Neural Netw Learn Syst. 2023 Jan;34(1):290-304. doi: 10.1109/TNNLS.2021.3093818. Epub 2023 Jan 5.
Support estimation (SE) of a sparse signal refers to finding the location indices of the nonzero elements in a sparse representation. Most of the traditional approaches dealing with SE problems are iterative algorithms based on greedy methods or optimization techniques. Indeed, a vast majority of them use sparse signal recovery (SR) techniques to obtain support sets instead of directly mapping the nonzero locations from denser measurements (e.g., compressively sensed measurements). This study proposes a novel approach for learning such a mapping from a training set. To accomplish this objective, the convolutional sparse support estimator networks (CSENs), each with a compact configuration, are designed. The proposed CSEN can be a crucial tool for the following scenarios: 1) real-time and low-cost SE can be applied in any mobile and low-power edge device for anomaly localization, simultaneous face recognition, and so on and 2) CSEN's output can directly be used as "prior information," which improves the performance of sparse SR algorithms. The results over the benchmark datasets show that state-of-the-art performance levels can be achieved by the proposed approach with a significantly reduced computational complexity.
稀疏信号的支撑估计(SE)是指在稀疏表示中找到非零元素的位置索引。大多数处理SE问题的传统方法是基于贪婪方法或优化技术的迭代算法。实际上,其中绝大多数使用稀疏信号恢复(SR)技术来获得支撑集,而不是直接从更密集的测量(例如,压缩感知测量)中映射非零位置。本研究提出了一种从训练集中学习这种映射的新方法。为了实现这一目标,设计了卷积稀疏支撑估计网络(CSEN),每个网络都具有紧凑的配置。所提出的CSEN可以成为以下场景的关键工具:1)实时和低成本的SE可应用于任何移动和低功耗边缘设备,用于异常定位、同步人脸识别等;2)CSEN的输出可以直接用作“先验信息”,这提高了稀疏SR算法的性能。在基准数据集上的结果表明,所提出的方法可以在显著降低计算复杂度的情况下达到当前的性能水平。