Suppr超能文献

胶质母细胞瘤的免疫逃逸策略

Immune Evasion Strategies of Glioblastoma.

作者信息

Razavi Seyed-Mostafa, Lee Karen E, Jin Benjamin E, Aujla Parvir S, Gholamin Sharareh, Li Gordon

机构信息

Department of Neurosurgery, Stanford University School of Medicine , Stanford, CA , USA.

Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, CA , USA.

出版信息

Front Surg. 2016 Mar 2;3:11. doi: 10.3389/fsurg.2016.00011. eCollection 2016.

Abstract

Glioblastoma (GBM) is the most devastating brain tumor, with associated poor prognosis. Despite advances in surgery and chemoradiation, the survival of afflicted patients has not improved significantly in the past three decades. Immunotherapy has been heralded as a promising approach in treatment of various cancers; however, the immune privileged environment of the brain usually curbs the optimal expected response in central nervous system malignancies. In addition, GBM cells create an immunosuppressive microenvironment and employ various methods to escape immune surveillance. The purpose of this review is to highlight the strategies by which GBM cells evade the host immune system. Further understanding of these strategies and the biology of this tumor will pave the way for developing novel immunotherapeutic approaches for treatment of GBM.

摘要

胶质母细胞瘤(GBM)是最具毁灭性的脑肿瘤,预后较差。尽管手术及放化疗取得了进展,但在过去三十年里,患病患者的生存率并未显著提高。免疫疗法被誉为治疗各种癌症的一种有前景的方法;然而,大脑的免疫豁免环境通常会抑制中枢神经系统恶性肿瘤的最佳预期反应。此外,GBM细胞会营造一种免疫抑制微环境,并采用各种方法逃避免疫监视。本综述的目的是强调GBM细胞逃避免疫系统的策略。对这些策略以及该肿瘤生物学的进一步了解将为开发治疗GBM的新型免疫疗法铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/168f/4773586/7c1f01892a65/fsurg-03-00011-g001.jpg

相似文献

1
Immune Evasion Strategies of Glioblastoma.
Front Surg. 2016 Mar 2;3:11. doi: 10.3389/fsurg.2016.00011. eCollection 2016.
2
Advances in immunotherapy for the treatment of glioblastoma.
J Neurooncol. 2017 Jan;131(1):1-9. doi: 10.1007/s11060-016-2299-2. Epub 2016 Oct 14.
3
Immunosuppression in Glioblastoma: Current Understanding and Therapeutic Implications.
Front Oncol. 2021 Oct 28;11:770561. doi: 10.3389/fonc.2021.770561. eCollection 2021.
4
Immunotherapy for Neuro-Oncology.
Adv Exp Med Biol. 2020;1244:183-203. doi: 10.1007/978-3-030-41008-7_8.
5
Computational Characterization of Suppressive Immune Microenvironments in Glioblastoma.
Cancer Res. 2018 Oct 1;78(19):5574-5585. doi: 10.1158/0008-5472.CAN-17-3714. Epub 2018 Jun 19.
6
Emerging immunotherapies for glioblastoma.
Expert Opin Emerg Drugs. 2016 Jun;21(2):133-45. doi: 10.1080/14728214.2016.1186643.
8
Challenges and strategies for successful clinical development of immune checkpoint inhibitors in glioblastoma.
Expert Opin Pharmacother. 2019 Sep;20(13):1609-1624. doi: 10.1080/14656566.2019.1621840. Epub 2019 Jul 2.
9
Reversing Epigenetic Gene Silencing to Overcome Immune Evasion in CNS Malignancies.
Front Oncol. 2021 Jul 15;11:719091. doi: 10.3389/fonc.2021.719091. eCollection 2021.
10
The network of immunosuppressive pathways in glioblastoma.
Biochem Pharmacol. 2017 Apr 15;130:1-9. doi: 10.1016/j.bcp.2016.12.011. Epub 2016 Dec 22.

引用本文的文献

1
Neurocognitive function and health-related quality of life among glioblastoma patients: A prospective study.
J Public Health Afr. 2025 Jan 10;16(1):660. doi: 10.4102/jphia.v16i1.660. eCollection 2025.
4
Nanotherapy of Glioblastoma-Where Hope Grows.
Int J Mol Sci. 2025 Feb 20;26(5):1814. doi: 10.3390/ijms26051814.
5
Immune Cell Interplay in the Fight Against GBM.
Cancers (Basel). 2025 Feb 26;17(5):817. doi: 10.3390/cancers17050817.
7
Research Progress of NK Cells in Glioblastoma Treatment.
Onco Targets Ther. 2025 Jan 18;18:87-106. doi: 10.2147/OTT.S486411. eCollection 2025.
9
ATRX mutation modifies the DNA damage response in glioblastoma multiforme tumor cells and enhances patient prognosis.
Medicine (Baltimore). 2025 Jan 10;104(2):e41180. doi: 10.1097/MD.0000000000041180.
10
PTEN loss in glioma cell lines leads to increased extracellular vesicle biogenesis and PD-L1 cargo in a PI3K-dependent manner.
J Biol Chem. 2025 Feb;301(2):108143. doi: 10.1016/j.jbc.2024.108143. Epub 2024 Dec 26.

本文引用的文献

1
The molecular constituents of the blood-brain barrier.
Trends Neurosci. 2015 Oct;38(10):598-608. doi: 10.1016/j.tins.2015.08.003.
2
Revisiting the Mechanisms of CNS Immune Privilege.
Trends Immunol. 2015 Oct;36(10):569-577. doi: 10.1016/j.it.2015.08.006.
4
PD-L1 expression and prognostic impact in glioblastoma.
Neuro Oncol. 2016 Feb;18(2):195-205. doi: 10.1093/neuonc/nov172. Epub 2015 Aug 30.
5
Antagonists of PD-1 and PD-L1 in Cancer Treatment.
Semin Oncol. 2015 Aug;42(4):587-600. doi: 10.1053/j.seminoncol.2015.05.013. Epub 2015 Jun 10.
6
Dendritic cell-based immunotherapy targeting Wilms' tumor 1 in patients with recurrent malignant glioma.
J Neurosurg. 2015 Oct;123(4):989-97. doi: 10.3171/2015.1.JNS141554. Epub 2015 Aug 7.
7
A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules.
J Exp Med. 2015 Jun 29;212(7):991-9. doi: 10.1084/jem.20142290. Epub 2015 Jun 15.
9
Structural and functional features of central nervous system lymphatic vessels.
Nature. 2015 Jul 16;523(7560):337-41. doi: 10.1038/nature14432. Epub 2015 Jun 1.
10
Immune checkpoint blockade: a common denominator approach to cancer therapy.
Cancer Cell. 2015 Apr 13;27(4):450-61. doi: 10.1016/j.ccell.2015.03.001. Epub 2015 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验