Suppr超能文献

用于人机交互的眼睛中心定位与注视手势识别。

Eye center localization and gaze gesture recognition for human-computer interaction.

作者信息

Zhang Wenhao, Smith Melvyn L, Smith Lyndon N, Farooq Abdul

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2016 Mar;33(3):314-25. doi: 10.1364/JOSAA.33.000314.

Abstract

This paper introduces an unsupervised modular approach for accurate and real-time eye center localization in images and videos, thus allowing a coarse-to-fine, global-to-regional scheme. The trajectories of eye centers in consecutive frames, i.e., gaze gestures, are further analyzed, recognized, and employed to boost the human-computer interaction (HCI) experience. This modular approach makes use of isophote and gradient features to estimate the eye center locations. A selective oriented gradient filter has been specifically designed to remove strong gradients from eyebrows, eye corners, and shadows, which sabotage most eye center localization methods. A real-world implementation utilizing these algorithms has been designed in the form of an interactive advertising billboard to demonstrate the effectiveness of our method for HCI. The eye center localization algorithm has been compared with 10 other algorithms on the BioID database and six other algorithms on the GI4E database. It outperforms all the other algorithms in comparison in terms of localization accuracy. Further tests on the extended Yale Face Database b and self-collected data have proved this algorithm to be robust against moderate head poses and poor illumination conditions. The interactive advertising billboard has manifested outstanding usability and effectiveness in our tests and shows great potential for benefiting a wide range of real-world HCI applications.

摘要

本文介绍了一种无监督模块化方法,用于在图像和视频中进行准确且实时的眼中心定位,从而实现从粗到细、从全局到局部的方案。对连续帧中眼中心的轨迹,即注视手势,进行进一步分析、识别并用于提升人机交互(HCI)体验。这种模块化方法利用等照度线和梯度特征来估计眼中心位置。专门设计了一种选择性定向梯度滤波器,以去除来自眉毛、眼角和阴影的强梯度,这些会破坏大多数眼中心定位方法。利用这些算法的实际应用已设计成交互式广告广告牌的形式,以展示我们的方法在人机交互方面的有效性。在BioID数据库上,已将眼中心定位算法与其他10种算法进行了比较,并在GI4E数据库上与其他6种算法进行了比较。在定位精度方面,它在比较中优于所有其他算法。在扩展的耶鲁人脸数据库b和自行收集的数据上进行的进一步测试证明,该算法对中等头部姿势和恶劣光照条件具有鲁棒性。交互式广告广告牌在我们的测试中表现出了出色的可用性和有效性,并显示出在广泛的实际人机交互应用中受益的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验