Younger Jane L, van den Hoff John, Wienecke Barbara, Hindell Mark, Miller Karen J
Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, 7001, Tasmania, Australia.
Australian Antarctic Division, 203 Channel Highway, Kingston, 7050, Tasmania, Australia.
BMC Evol Biol. 2016 Mar 15;16:61. doi: 10.1186/s12862-016-0630-3.
Models that predict changes in the abundance and distribution of fauna under future climate change scenarios often assume that ecological niche and habitat availability are the major determinants of species' responses to climate change. However, individual species may have very different capacities to adapt to environmental change, as determined by intrinsic factors such as their dispersal ability, genetic diversity, generation time and rate of evolution. These intrinsic factors are usually excluded from forecasts of species' abundance and distribution changes. We aimed to determine the importance of these factors by comparing the impact of the most recent climate regime change, the late Pleistocene glacial-interglacial transition, on two sympatric, ice-dependent meso-predators, the emperor penguin (Aptenodytes forsteri) and Weddell seal (Leptonychotes weddellii).
We reconstructed the population trend of emperor penguins and Weddell seals in East Antarctica over the past 75,000 years using mitochondrial DNA sequences and an extended Bayesian skyline plot method. We also assessed patterns of contemporary population structure and genetic diversity.
Despite their overlapping distributions and shared dependence on sea ice, our genetic data revealed very different responses to climate warming between these species. The emperor penguin population grew rapidly following the glacial-interglacial transition, but the size of the Weddell seal population did not change. The expansion of emperor penguin numbers during the warm Holocene may have been facilitated by their higher dispersal ability and gene flow among colonies, and fine-scale differences in preferred foraging locations.
The vastly different climate change responses of two sympatric ice-dependent predators suggests that differing adaptive capacities and/or fine-scale niche differences can play a major role in species' climate change responses, and that adaptive capacity should be considered alongside niche and distribution in future species forecasts.
预测未来气候变化情景下动物群落丰度和分布变化的模型通常假定生态位和栖息地可利用性是物种对气候变化响应的主要决定因素。然而,个体物种适应环境变化的能力可能差异很大,这取决于其扩散能力、遗传多样性、世代时间和进化速率等内在因素。这些内在因素通常在物种丰度和分布变化预测中被排除。我们旨在通过比较最近的气候变化事件,即晚更新世冰期 - 间冰期过渡,对两种同域分布、依赖冰的中型食肉动物,帝企鹅(Aptenodytes forsteri)和威德尔海豹(Leptonychotes weddellii)的影响,来确定这些因素的重要性。
我们使用线粒体DNA序列和扩展贝叶斯天际线图方法重建了过去75000年东极南极帝企鹅和威德尔海豹的种群趋势。我们还评估了当代种群结构和遗传多样性模式。
尽管它们分布重叠且都依赖海冰,但我们的遗传数据显示这两个物种对气候变暖的反应截然不同。冰期 - 间冰期过渡后,帝企鹅种群迅速增长,但威德尔海豹种群规模没有变化。全新世温暖时期帝企鹅数量的增加可能得益于其较高的扩散能力、群体间的基因流动以及偏好觅食地点的细微差异。
两种同域分布、依赖冰的食肉动物对气候变化的反应差异巨大,这表明不同的适应能力和/或细微的生态位差异在物种对气候变化的反应中可能起主要作用,并且在未来的物种预测中,应将适应能力与生态位和分布一并考虑。