School of Statistics and Actuarial Science, University of the Witwatersrand, Johannesburg, 2050, South Africa.
CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 Route de Mende, Montpellier, 34293, France.
Glob Chang Biol. 2017 Mar;23(3):1353-1359. doi: 10.1111/gcb.13538. Epub 2016 Nov 17.
Early-life demographic traits are poorly known, impeding our understanding of population processes and sensitivity to climate change. Survival of immature individuals is a critical component of population dynamics and recruitment in particular. However, obtaining reliable estimates of juvenile survival (i.e., from independence to first year) remains challenging, as immatures are often difficult to observe and to monitor individually in the field. This is particularly acute for seabirds, in which juveniles stay at sea and remain undetectable for several years. In this work, we developed a Bayesian integrated population model to estimate the juvenile survival of emperor penguins (Aptenodytes forsteri), and other demographic parameters including adult survival and fecundity of the species. Using this statistical method, we simultaneously analyzed capture-recapture data of adults, the annual number of breeding females, and the number of fledglings of emperor penguins collected at Dumont d'Urville, Antarctica, for the period 1971-1998. We also assessed how climate covariates known to affect the species foraging habitats and prey [southern annular mode (SAM), sea ice concentration (SIC)] affect juvenile survival. Our analyses revealed that there was a strong evidence for the positive effect of SAM during the rearing period (SAMR) on juvenile survival. Our findings suggest that this large-scale climate index affects juvenile emperor penguins body condition and survival through its influence on wind patterns, fast ice extent, and distance to open water. Estimating the influence of environmental covariates on juvenile survival is of major importance to understand the impacts of climate variability and change on the population dynamics of emperor penguins and seabirds in general and to make robust predictions on the impact of climate change on marine predators.
早期生命的人口特征鲜为人知,这阻碍了我们对人口过程的理解和对气候变化的敏感性。未成熟个体的存活率是种群动态和繁殖力的关键组成部分。然而,获得可靠的幼年个体存活率(即从独立到第一年)的估计仍然具有挑战性,因为在野外,幼体通常难以观察和单独监测。对于海鸟来说,这一点尤为突出,因为幼鸟会留在海上,在几年内都无法被发现。在这项工作中,我们开发了一个贝叶斯综合种群模型来估计帝企鹅(Aptenodytes forsteri)的幼年个体存活率,以及其他人口参数,包括成年个体的存活率和物种的繁殖力。使用这种统计方法,我们同时分析了 1971 年至 1998 年期间在南极洲的杜蒙·德·于维尔(Dumont d'Urville)收集的成年个体的捕获再捕获数据、每年繁殖雌性的数量和幼鸟的数量。我们还评估了已知影响物种觅食栖息地和猎物的气候协变量(南环模态(SAM)、海冰浓度(SIC))如何影响幼年个体的存活率。我们的分析表明,SAM 在育雏期(SAMR)对幼年个体存活率有很强的积极影响。我们的研究结果表明,这种大规模的气候指数通过影响风模式、浮冰范围和到开阔水域的距离,影响幼年帝企鹅的身体状况和存活率。估计环境协变量对幼年个体存活率的影响对于理解气候变化对帝企鹅和一般海鸟种群动态的影响以及对气候变化对海洋捕食者的影响做出稳健的预测非常重要。