Pienaar Elsje, Matern William M, Linderman Jennifer J, Bader Joel S, Kirschner Denise E
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Infect Immun. 2016 Apr 22;84(5):1650-1669. doi: 10.1128/IAI.01438-15. Print 2016 May.
Granulomas are a hallmark of tuberculosis. Inside granulomas, the pathogen Mycobacterium tuberculosis may enter a metabolically inactive state that is less susceptible to antibiotics. Understanding M. tuberculosis metabolism within granulomas could contribute to reducing the lengthy treatment required for tuberculosis and provide additional targets for new drugs. Two key adaptations of M. tuberculosis are a nonreplicating phenotype and accumulation of lipid inclusions in response to hypoxic conditions. To explore how these adaptations influence granuloma-scale outcomes in vivo, we present a multiscale in silico model of granuloma formation in tuberculosis. The model comprises host immunity, M. tuberculosis metabolism, M. tuberculosis growth adaptation to hypoxia, and nutrient diffusion. We calibrated our model to in vivo data from nonhuman primates and rabbits and apply the model to predict M. tuberculosis population dynamics and heterogeneity within granulomas. We found that bacterial populations are highly dynamic throughout infection in response to changing oxygen levels and host immunity pressures. Our results indicate that a nonreplicating phenotype, but not lipid inclusion formation, is important for long-term M. tuberculosis survival in granulomas. We used virtual M. tuberculosis knockouts to predict the impact of both metabolic enzyme inhibitors and metabolic pathways exploited to overcome inhibition. Results indicate that knockouts whose growth rates are below ∼66% of the wild-type growth rate in a culture medium featuring lipid as the only carbon source are unable to sustain infections in granulomas. By mapping metabolite- and gene-scale perturbations to granuloma-scale outcomes and predicting mechanisms of sterilization, our method provides a powerful tool for hypothesis testing and guiding experimental searches for novel antituberculosis interventions.
肉芽肿是结核病的一个标志。在肉芽肿内部,病原体结核分枝杆菌可能进入一种代谢不活跃的状态,这种状态对抗生素不太敏感。了解肉芽肿内结核分枝杆菌的代谢情况有助于缩短结核病所需的漫长治疗时间,并为新药提供更多靶点。结核分枝杆菌的两个关键适应性变化是形成非复制表型以及在缺氧条件下积累脂质包涵体。为了探究这些适应性变化如何在体内影响肉芽肿规模的结果,我们提出了一个结核病肉芽肿形成的多尺度计算机模型。该模型包括宿主免疫、结核分枝杆菌代谢、结核分枝杆菌对缺氧的生长适应性以及营养物质扩散。我们将模型校准到来自非人灵长类动物和兔子的体内数据,并应用该模型预测肉芽肿内结核分枝杆菌的种群动态和异质性。我们发现,在整个感染过程中,细菌种群会随着氧气水平和宿主免疫压力的变化而高度动态变化。我们的结果表明,非复制表型而非脂质包涵体的形成对结核分枝杆菌在肉芽肿中的长期存活很重要。我们使用虚拟的结核分枝杆菌基因敲除来预测代谢酶抑制剂和为克服抑制作用而利用的代谢途径的影响。结果表明,在以脂质作为唯一碳源的培养基中,生长速率低于野生型生长速率约66%的基因敲除菌株无法在肉芽肿中维持感染。通过将代谢物和基因尺度上的扰动映射到肉芽肿尺度的结果,并预测杀菌机制,我们的方法为假设检验和指导新型抗结核干预措施的实验探索提供了一个强大的工具。