Liu Xueqing, Burhans Maggie S, Flowers Matthew T, Ntambi James M
Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
Department of Nutritional Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA.
J Hepatol. 2016 Jul;65(1):103-112. doi: 10.1016/j.jhep.2016.03.001. Epub 2016 Mar 11.
BACKGROUND & AIMS: High-carbohydrate diets contribute to the development of liver stress and fatty liver disease. While saturated fatty acids are known to induce liver stress, the role of monounsaturated fatty acids (MUFA), synthesized by the stearoyl-CoA desaturase (SCD) family of enzymes, in regulation of liver function during lipogenic dietary conditions remains largely unknown. The major products of SCD-catalyzed reactions are oleate (18:1n-9) and palmitoleate (16:1n-7).
We generated mouse models with restricted exogenous MUFA supply and reduced endogenous MUFA synthesis, in which SCD1 global knockout (GKO) or liver-specific knockout (LKO) mice were fed a lipogenic high-sucrose very low-fat (HSVLF) or high-carbohydrate (HC) diet. In a gain-of-function context, we introduced liver-specific expression of either human SCD5, which synthesizes 18:1n-9, or mouse Scd3, which synthesizes 16:1n-7, into SCD1 GKO mice and fed the HSVLF diet.
Lipogenic high-carbohydrate diets induced hepatic endoplasmic reticulum (ER) stress and inflammation in SCD1 GKO and LKO mice. Dietary supplementation with 18:1n-9, but not 18:0, prevented the HSVLF diet-induced hepatic ER stress and inflammation in SCD1 LKO mice, while hepatic SCD5, but not Scd3, expression reduced the ER stress and inflammation in GKO mice. Additional experiments revealed liver-specific deletion of the transcriptional coactivator PGC-1α reduced hepatic inflammatory and ER stress response gene expression in SCD1 LKO mice.
Our results demonstrate an indispensable role of hepatic oleate in protection against lipogenic diet-induced hepatic injury, and PGC-1α potentiates the ER stress response under conditions of restricted dietary oleate coupled to reduced capacity of endogenous hepatic oleate synthesis.
Susceptibility to metabolic dysfunction is influenced by genetic and environmental factors. In this study we show that modulation of two genes regulates the liver response, including ER stress and inflammation, to a high-carbohydrate low-fat diet. We reveal that hepatic availability of oleate, a monounsaturated fatty acid, is important for maintenance of liver health.
高碳水化合物饮食会促使肝脏应激和脂肪肝疾病的发展。虽然已知饱和脂肪酸会诱发肝脏应激,但在生脂饮食条件下,由硬脂酰辅酶A去饱和酶(SCD)家族酶合成的单不饱和脂肪酸(MUFA)在肝功能调节中的作用仍 largely 未知。SCD催化反应的主要产物是油酸(18:1n - 9)和棕榈油酸(16:1n - 7)。
我们构建了外源MUFA供应受限且内源性MUFA合成减少的小鼠模型,其中SCD1全身敲除(GKO)或肝脏特异性敲除(LKO)小鼠被喂食生脂的高蔗糖极低脂肪(HSVLF)或高碳水化合物(HC)饮食。在功能获得的情况下,我们将合成18:1n - 9的人SCD5或合成16:1n - 7的小鼠Scd3的肝脏特异性表达引入SCD1 GKO小鼠,并喂食HSVLF饮食。
生脂的高碳水化合物饮食在SCD1 GKO和LKO小鼠中诱发了肝脏内质网(ER)应激和炎症。用18:1n - 9而非18:0进行饮食补充可预防HSVLF饮食诱导的SCD1 LKO小鼠肝脏ER应激和炎症,而肝脏SCD5而非Scd3的表达降低了GKO小鼠的ER应激和炎症。额外的实验表明,转录共激活因子PGC - 1α的肝脏特异性缺失降低了SCD1 LKO小鼠肝脏炎症和ER应激反应基因的表达。
我们的结果表明肝脏油酸在预防生脂饮食诱导的肝脏损伤中起不可或缺的作用,并且在饮食油酸受限且肝脏内源性油酸合成能力降低的情况下,PGC - 1α增强了ER应激反应。
对代谢功能障碍的易感性受遗传和环境因素影响。在本研究中,我们表明两个基因的调节可调控肝脏对高碳水化合物低脂饮食的反应,包括ER应激和炎症。我们揭示单不饱和脂肪酸油酸的肝脏可用性对维持肝脏健康很重要。