Teich René, Zauner Stefan, Baurain Denis, Brinkmann Henner, Petersen Jörn
Institut für Genetik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany.
Protist. 2007 Jul;158(3):263-76. doi: 10.1016/j.protis.2006.12.004. Epub 2007 Mar 21.
Sedoheptulose-1,7-bisphosphatase (SBPase) and fructose-1,6-bisphosphatase (FBPase) are essential nuclear-encoded enzymes involved in land plant Calvin cycle and gluconeogenesis. In this study, we cloned seven SBP and seven FBP cDNAs/genes and established sequences from all lineages of photosynthetic eukaryotes, in order to investigate their origin and evolution. Our data are best explained by a single recruitment of plastid-targeted SBP in Plantae after primary endosymbiosis and a further distribution to algae with complex plastids. While SBP is universally found in photosynthetic lineages, its presence in apicomplexa, ciliates, trypanosomes, and ascomycetes is surprising given that no metabolic function beyond the one in the plastid Calvin cycle is described so far. Sequences of haptophytes, cryptophytes, diatoms, and peridinin-containing dinoflagellates (complex red lineage) strongly group together in the SBP tree and the same assemblage is recovered for plastid-targeted FBP sequences, although this is less supported. Both SBP and plastid-targeted FBP are most likely of red algal origin. Including phosphoribulokinase, fructose bisphosphate aldolase, and glyceraldehyde-3-phosphate dehydrogenase, a total of five independent plastid-related nuclear-encoded markers support a common origin of all complex rhodoplasts via a single secondary endosymbiosis event. However, plastid phylogenies are incongruent with those of the host cell, as illustrated by the cytosolic FBP isoenzyme. These results are discussed in the context of Cavalier-Smith's far-reaching chromalveolate hypothesis. In our opinion, a more plausible evolutionary scenario would be the establishment of a unique secondary rhodoplast and its subsequent spread via tertiary endosymbioses.
景天庚酮糖-1,7-二磷酸酶(SBPase)和果糖-1,6-二磷酸酶(FBPase)是参与陆地植物卡尔文循环和糖异生作用的重要核编码酶。在本研究中,我们克隆了7个SBP和7个FBP cDNA/基因,并确定了光合真核生物所有谱系的序列,以研究它们的起源和进化。我们的数据最好的解释是,在植物初级内共生后,质体靶向的SBP在植物界中被单次招募,并进一步分布到具有复杂质体的藻类中。虽然SBP普遍存在于光合谱系中,但鉴于迄今为止尚未描述其在顶复门、纤毛虫、锥虫和子囊菌中的代谢功能,其在这些生物中的存在令人惊讶。定鞭藻、隐藻、硅藻和含多甲藻素的甲藻(复杂红藻谱系)的序列在SBP树中强烈聚类在一起,并且质体靶向的FBP序列也得到了相同的组合,尽管支持力度较小。SBP和质体靶向的FBP最有可能起源于红藻。包括磷酸核酮糖激酶、果糖二磷酸醛缩酶和甘油醛-3-磷酸脱氢酶,总共五个独立的质体相关核编码标记支持所有复杂红质体通过单次次生内共生事件具有共同起源。然而,质体系统发育与宿主细胞的系统发育不一致,如胞质FBP同工酶所示。这些结果在卡瓦利埃-史密斯影响深远的色素体假说来讨论。我们认为,一个更合理的进化情景是建立一个独特的次生红质体,并随后通过三次内共生传播。