Suppr超能文献

生命系统与合成电极界面的功能融合。

Functional fusion of living systems with synthetic electrode interfaces.

作者信息

Staufer Oskar, Weber Sebastian, Bengtson C Peter, Bading Hilmar, Spatz Joachim P, Rustom Amin

机构信息

Max-Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstraße 3, D-70569 Stuttgart, Germany; German Cancer Research Center, DKFZ Life Science Lab, Im Neuenheimer Feld 581, D-69120 Heidelberg, Germany; Bachelor Program Molecular Biotechnology, University of Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.

Max-Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstraße 3, D-70569 Stuttgart, Germany.

出版信息

Beilstein J Nanotechnol. 2016 Feb 26;7:296-301. doi: 10.3762/bjnano.7.27. eCollection 2016.

Abstract

The functional fusion of "living" biomaterial (such as cells) with synthetic systems has developed into a principal ambition for various scientific disciplines. In particular, emerging fields such as bionics and nanomedicine integrate advanced nanomaterials with biomolecules, cells and organisms in order to develop novel strategies for applications, including energy production or real-time diagnostics utilizing biomolecular machineries "perfected" during billion years of evolution. To date, hardware-wetware interfaces that sample or modulate bioelectric potentials, such as neuroprostheses or implantable energy harvesters, are mostly based on microelectrodes brought into the closest possible contact with the targeted cells. Recently, the possibility of using electrochemical gradients of the inner ear for technical applications was demonstrated using implanted electrodes, where 1.12 nW of electrical power was harvested from the guinea pig endocochlear potential for up to 5 h (Mercier, P.; Lysaght, A.; Bandyopadhyay, S.; Chandrakasan, A.; Stankovic, K. Nat. Biotech. 2012, 30, 1240-1243). More recent approaches employ nanowires (NWs) able to penetrate the cellular membrane and to record extra- and intracellular electrical signals, in some cases with subcellular resolution (Spira, M.; Hai, A. Nat. Nano. 2013, 8, 83-94). Such techniques include nanoelectric scaffolds containing free-standing silicon NWs (Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat Nanotechnol. 2012, 10, 180-184) or NW field-effect transistors (Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C. Nat. Nano. 2013, 9, 142-147), vertically aligned gallium phosphide NWs (Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Nano Lett. 2007, 7, 2960-2965) or individually contacted, electrically active carbon nanofibers. The latter of these approaches is capable of recording electrical responses from oxidative events occurring in intercellular regions of neuronal cultures (Zhang, D.; Rand, E.; Marsh, M.; Andrews, R.; Lee, K.; Meyyappan, M.; Koehne, J. Mol. Neurobiol. 2013, 48, 380-385). Employing monocrystalline gold, nanoelectrode interfaces, we have now achieved stable, functional access to the electrochemical machinery of individual Physarum polycephalum slime mold cells. We demonstrate the "symbionic" union, allowing for electrophysiological measurements, functioning as autonomous sensors and capable of producing nanowatts of electric power. This represents a further step towards the future development of groundbreaking, cell-based technologies, such as bionic sensory systems or miniaturized energy sources to power various devices, or even "intelligent implants", constantly refueled by their surrounding nutrients.

摘要

“活的”生物材料(如细胞)与合成系统的功能融合已成为各学科的主要目标。特别是,仿生学和纳米医学等新兴领域将先进的纳米材料与生物分子、细胞和生物体相结合,以开发新的应用策略,包括利用在数十亿年进化过程中“完善”的生物分子机制进行能量生产或实时诊断。迄今为止,诸如神经假体或植入式能量收集器等对生物电势进行采样或调节的硬件 - 软件接口,大多基于与目标细胞尽可能紧密接触的微电极。最近,利用植入电极证明了将内耳的电化学梯度用于技术应用的可能性,从豚鼠的内耳蜗电位中收获了1.12纳瓦的电功率,可持续长达5小时(梅西尔,P.;利萨格特,A.;班迪奥帕迪亚,S.;钱德拉卡山,A.;斯坦科维奇,K.《自然生物技术》2012年,30卷,1240 - 1243页)。最近的方法采用能够穿透细胞膜并记录细胞外和细胞内电信号的纳米线(NWs),在某些情况下具有亚细胞分辨率(斯皮拉,M.;海,A.《自然纳米技术》2013年,8卷,83 - 94页)。此类技术包括含有独立硅纳米线的纳米电支架(罗宾逊,J.T.;约尔戈利,M.;沙莱克,A.K.;尹,M.H.;格特纳,R.S.;帕克,H.《自然纳米技术》2012年,10卷,180 - 184页)或纳米线场效应晶体管(卿,Q.;江,Z.;徐,L.;高,R.;麦,L.;利伯,C.《自然纳米技术》2013年,9卷,142 - 147页)、垂直排列的磷化镓纳米线(霍尔斯特伦,W.;马尔滕松,T.;普林兹,C.;古斯塔夫松,P.;蒙泰利乌斯,L.;萨缪尔森,L.;坎杰,M.《纳米快报》2007年,7卷,2960 - 2965页)或单独接触的电活性碳纳米纤维。这些方法中的后者能够记录神经元培养物细胞间区域发生的氧化事件的电响应(张,D.;兰德,E.;马什,M.;安德鲁斯,R.;李,K.;梅亚潘,M.;克内,J.《分子神经生物学》2013年,48卷,380 - 385页)。我们现在利用单晶金纳米电极界面,实现了对单个多头绒泡菌黏菌细胞的电化学机制的稳定、功能性接入。我们展示了这种“共生”结合,它允许进行电生理测量,作为自主传感器发挥作用,并能够产生纳瓦级的电功率。这代表着朝着基于细胞的开创性技术的未来发展又迈进了一步,例如仿生传感系统或为各种设备供电的微型能源,甚至是由周围营养物质持续提供能量的“智能植入物”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3089/4778514/4a0e85b26ff7/Beilstein_J_Nanotechnol-07-296-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验