Tchoe Youngbin, Lee Jihwan, Liu Ren, Bourhis Andrew M, Vatsyayan Ritwik, Tonsfeldt Karen J, Dayeh Shadi A
Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA.
Appl Phys Rev. 2021 Dec;8(4):041317. doi: 10.1063/5.0052666.
Nanoscale interfaces with biological tissue, principally made with nanowires (NWs), are envisioned as minimally destructive to the tissue and as scalable tools to directly transduce the electrochemical activity of a neuron at its finest resolution. This review lays the foundations for understanding the material and device considerations required to interrogate neuronal activity at the nanoscale. We first discuss the electrochemical nanoelectrode-neuron interfaces and then present new results concerning the electrochemical impedance and charge injection capacities of millimeter, micrometer, and nanometer scale wires with Pt, PEDOT:PSS, Si, Ti, ITO, IrO , Ag, and AgCl materials. Using established circuit models for NW-neuron interfaces, we discuss the impact of having multiple NWs interfacing with a single neuron on the amplitude and temporal characteristics of the recorded potentials. We review state of the art advances in nanoelectrode-neuron interfaces, the standard control experiments to investigate their electrophysiological behavior, and present recent high fidelity recordings of intracellular potentials obtained with ultrasharp NWs developed in our laboratory that naturally permeate neuronal cell bodies. Recordings from arrays and individually addressable electrically shorted NWs are presented, and the long-term stability of intracellular recording is discussed and put in the context of established techniques. Finally, a perspective on future research directions and applications is presented.
与生物组织的纳米级界面主要由纳米线(NWs)构成,被视为对组织破坏最小且可扩展的工具,能够以最高分辨率直接转导神经元的电化学活动。本综述为理解在纳米尺度上研究神经元活动所需的材料和器件考量奠定了基础。我们首先讨论电化学纳米电极 - 神经元界面,然后展示关于毫米、微米和纳米尺度的铂(Pt)、聚(3,4 - 乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)、硅(Si)、钛(Ti)、氧化铟锡(ITO)、氧化铱(IrO)、银(Ag)和氯化银(AgCl)材料制成的导线的电化学阻抗和电荷注入能力的新结果。使用已建立的NW - 神经元界面电路模型,我们讨论多个NW与单个神经元连接对记录电位的幅度和时间特性的影响。我们回顾纳米电极 - 神经元界面的最新进展、用于研究其电生理行为的标准对照实验,并展示我们实验室开发的能自然穿透神经元细胞体的超尖锐NW所获得的细胞内电位的近期高保真记录。展示了来自阵列和可单独寻址的电短路NW的记录,并讨论了细胞内记录的长期稳定性,并将其与现有技术进行对比。最后,给出了对未来研究方向和应用的展望。