Suppr超能文献

基于改进的相关向量机和实车试验的军用车辆牵引能力预测

Prediction of Military Vehicle's Drawbar Pull Based on an Improved Relevance Vector Machine and Real Vehicle Tests.

作者信息

Yang Fan, Sun Wei, Lin Guoyu, Zhang Weigong

机构信息

Instrument and Meter Engineering, Southeast University, Nanjing 210096, China.

The 14th Research Institute, China Electronics Technology Group Corporation, Nanjing 210013, China.

出版信息

Sensors (Basel). 2016 Mar 10;16(3):351. doi: 10.3390/s16030351.

Abstract

The scientific and effective prediction of drawbar pull is of great importance in the evaluation of military vehicle trafficability. Nevertheless, the existing prediction models have demonstrated lots of inherent limitations. In this framework, a multiple-kernel relevance vector machine model (MkRVM) including Gaussian kernel and polynomial kernel is proposed to predict drawbar pull. Nonlinear decreasing inertia weight particle swarm optimization (NDIWPSO) is employed for parameter optimization. As the relations between drawbar pull and its influencing factors have not been tested on real vehicles, a series of experimental analyses based on real vehicle test data are done to confirm the effective influencing factors. A dynamic testing system is applied to conduct field tests and gain required test data. Gaussian kernel RVM, polynomial kernel RVM, support vector machine (SVM) and generalized regression neural network (GRNN) are also used to compare with the MkRVM model. The results indicate that the MkRVM model is a preferable model in this case. Finally, the proposed novel model is compared to the traditional prediction model of drawbar pull. The results show that the MkRVM model significantly improves the prediction accuracy. A great potential of improved RVM is indicated in further research of wheel-soil interactions.

摘要

牵引杆拉力的科学有效预测在军用车辆通行性评估中具有重要意义。然而,现有的预测模型存在诸多固有局限性。在此框架下,提出了一种包含高斯核和多项式核的多核相关向量机模型(MkRVM)来预测牵引杆拉力。采用非线性递减惯性权重粒子群优化算法(NDIWPSO)进行参数优化。由于牵引杆拉力与其影响因素之间的关系尚未在实际车辆上进行测试,因此基于实际车辆测试数据进行了一系列实验分析,以确定有效的影响因素。应用动态测试系统进行现场测试并获取所需的测试数据。还使用高斯核RVM、多项式核RVM、支持向量机(SVM)和广义回归神经网络(GRNN)与MkRVM模型进行比较。结果表明,在这种情况下,MkRVM模型是一个较好的模型。最后,将所提出的新模型与传统的牵引杆拉力预测模型进行比较。结果表明,MkRVM模型显著提高了预测精度。改进的RVM在轮土相互作用的进一步研究中显示出巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73c5/4813926/fd36ddbdcad1/sensors-16-00351-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验