Tianjin Key Laboratory For Control Theory & Applications in Complicated Systems, Tianjin University of Technology, Tianjin, The People's Republic of China.
Xi'an Modern Control Technology Research Institute, Xi'an, Shaanxi Province, The People's Republic of China.
PLoS One. 2018 Jun 29;13(6):e0198786. doi: 10.1371/journal.pone.0198786. eCollection 2018.
This paper addresses a chaos kernel function for the relevance vector machine (RVM) in EEG signal classification, which is an important component of Brain-Computer Interface (BCI). The novel kernel function has evolved from a chaotic system, which is inspired by the fact that human brain signals depict some chaotic characteristics and behaviors. By introducing the chaotic dynamics to the kernel function, the RVM will be enabled for higher classification capacity. The proposed method is validated within the framework of one versus one common spatial pattern (OVO-CSP) classifier to classify motor imagination (MI) of four movements in a public accessible dataset. To illustrate the performance of the proposed kernel function, Gaussian and Polynomial kernel functions are considered for comparison. Experimental results show that the proposed kernel function achieved higher accuracy than Gaussian and Polynomial kernel functions, which shows that the chaotic behavior consideration is helpful in the EEG signal classification.
本文提出了一种用于脑电信号分类的相关向量机(RVM)混沌核函数,这是脑机接口(BCI)的一个重要组成部分。该新核函数源于混沌系统,其灵感来自于人脑信号呈现出一些混沌特征和行为的事实。通过将混沌动力学引入核函数,RVM 将能够实现更高的分类能力。该方法在一对一公共空间模式(OVO-CSP)分类器的框架内进行验证,以在一个公共可访问的数据集上对四种运动的运动想象(MI)进行分类。为了说明所提出核函数的性能,考虑了高斯核函数和多项式核函数进行比较。实验结果表明,所提出的核函数比高斯核函数和多项式核函数具有更高的准确性,这表明在 EEG 信号分类中考虑混沌行为是有帮助的。