Suppr超能文献

使用肽-MHC十二聚体对抗原特异性T细胞进行检测、表型分析和定量

Detection, phenotyping, and quantification of antigen-specific T cells using a peptide-MHC dodecamer.

作者信息

Huang Jun, Zeng Xun, Sigal Natalia, Lund Peder J, Su Laura F, Huang Huang, Chien Yueh-hsiu, Davis Mark M

机构信息

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305;

Department of Medicine, Division of Rheumatology, University of Pennsylvania, Philadelphia, PA 19104;

出版信息

Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1890-7. doi: 10.1073/pnas.1602488113. Epub 2016 Mar 15.

Abstract

Here we report a peptide-MHC (pMHC) dodecamer as a "next generation" technology that is a significantly more sensitive and versatile alternative to pMHC tetramers for the detection, isolation, and phenotypic analysis of antigen-specific T cells. In particular, dodecamers are able to detect two- to fivefold more antigen-specific T cells in both human and murine CD4(+)and CD8(+)αβ T-cell compartments compared with the equivalent tetramers. The low-affinity, tetramer-negative, dodecamer-positive T cells showed comparable effector cytokine responses as those of high-affinity, tetramer-positive T cells. Dodecamers are able to detect early stage CD4(+)CD8(+)double-positive thymocytes on which T-cell receptors are 10- to 30-fold less dense than mature T cells. Dodecamers also show utility in the analysis of γδ T cells and in cytometry by time-of-flight applications. This construct has a simple structure with a central scaffold protein linked to four streptavidin molecules, each having three pMHC ligands or other molecules. The dodecamer is straightforward and inexpensive to produce and is compatible with current tetramer technology and commercially available streptavidin conjugates.

摘要

在此,我们报告一种肽 - 主要组织相容性复合体(pMHC)十二聚体,作为一种“下一代”技术,它是用于抗原特异性T细胞检测、分离和表型分析的pMHC四聚体的一种显著更灵敏且用途更广的替代物。特别是,与等效的四聚体相比,十二聚体在人和小鼠的CD4(+)和CD8(+)αβ T细胞区室中能够检测到多两到五倍的抗原特异性T细胞。低亲和力、四聚体阴性、十二聚体阳性的T细胞表现出与高亲和力、四聚体阳性T细胞相当的效应细胞因子反应。十二聚体能够检测早期CD4(+)CD8(+)双阳性胸腺细胞,其T细胞受体的密度比成熟T细胞低10至30倍。十二聚体在γδ T细胞分析以及飞行时间流式细胞术应用中也显示出实用性。这种构建体结构简单,有一个中央支架蛋白与四个链霉亲和素分子相连,每个链霉亲和素分子有三个pMHC配体或其他分子。十二聚体的生产简单且成本低廉,并且与当前的四聚体技术和市售的链霉亲和素偶联物兼容。

相似文献

1
Detection, phenotyping, and quantification of antigen-specific T cells using a peptide-MHC dodecamer.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1890-7. doi: 10.1073/pnas.1602488113. Epub 2016 Mar 15.
2
[MHC tetramers: tracking specific immunity].
Acta Med Croatica. 2003;57(4):255-9.
3
Multiplexed Peptide-MHC Tetramer Staining with Mass Cytometry.
Methods Mol Biol. 2015;1346:115-31. doi: 10.1007/978-1-4939-2987-0_9.
5
Preparation of peptide-MHC and T-cell receptor dextramers by biotinylated dextran doping.
Biotechniques. 2017 Mar 1;62(3):123-130. doi: 10.2144/000114525.
6
Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers.
J Immunol Methods. 2009 Jan 1;340(1):11-24. doi: 10.1016/j.jim.2008.09.014. Epub 2008 Oct 16.
7
Force-Regulated In Situ TCR-Peptide-Bound MHC Class II Kinetics Determine Functions of CD4+ T Cells.
J Immunol. 2015 Oct 15;195(8):3557-64. doi: 10.4049/jimmunol.1501407. Epub 2015 Sep 2.
8
9
High-throughput identification of human antigen-specific CD8 and CD4 T cells using soluble pMHC multimers.
Methods Enzymol. 2020;631:21-42. doi: 10.1016/bs.mie.2019.05.019. Epub 2019 Jun 7.
10
The duration of TCR/pMHC interactions regulates CTL effector function and tumor-killing capacity.
Eur J Immunol. 2009 Aug;39(8):2259-69. doi: 10.1002/eji.200939341.

引用本文的文献

1
Genetically engineered CD80-pMHC-harboring extracellular vesicles for antigen-specific CD4 T-cell engagement.
Front Bioeng Biotechnol. 2024 Jan 17;11:1341685. doi: 10.3389/fbioe.2023.1341685. eCollection 2023.
2
MediMer: a versatile do-it-yourself peptide-receptive MHC class I multimer platform for tumor neoantigen-specific T cell detection.
Front Immunol. 2024 Jan 4;14:1294565. doi: 10.3389/fimmu.2023.1294565. eCollection 2023.
3
Low-affinity CD8 T cells provide interclonal help to high-affinity CD8 T cells to augment alloimmunity.
Am J Transplant. 2024 Jun;24(6):933-943. doi: 10.1016/j.ajt.2024.01.008. Epub 2024 Jan 14.
4
Utilizing immunogenomic approaches to prioritize targetable neoantigens for personalized cancer immunotherapy.
Front Immunol. 2023 Dec 12;14:1301100. doi: 10.3389/fimmu.2023.1301100. eCollection 2023.
6
What's the Catch? The Significance of Catch Bonds in T Cell Activation.
J Immunol. 2023 Aug 1;211(3):333-342. doi: 10.4049/jimmunol.2300141.
7
Antigen-specific and cross-reactive T cells in protection and disease.
Immunol Rev. 2023 Jul;316(1):120-135. doi: 10.1111/imr.13217. Epub 2023 May 20.
8
CD4 T cell memory.
Nat Immunol. 2023 Jun;24(6):903-914. doi: 10.1038/s41590-023-01510-4. Epub 2023 May 8.

本文引用的文献

1
Antibody stabilization of peptide-MHC multimers reveals functional T cells bearing extremely low-affinity TCRs.
J Immunol. 2015 Jan 1;194(1):463-74. doi: 10.4049/jimmunol.1401785. Epub 2014 Dec 1.
2
SpyAvidin hubs enable precise and ultrastable orthogonal nanoassembly.
J Am Chem Soc. 2014 Sep 3;136(35):12355-63. doi: 10.1021/ja505584f. Epub 2014 Aug 21.
4
Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization.
Nat Biotechnol. 2013 Jul;31(7):623-9. doi: 10.1038/nbt.2593. Epub 2013 Jun 9.
5
γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response.
Immunity. 2012 Sep 21;37(3):524-34. doi: 10.1016/j.immuni.2012.06.011. Epub 2012 Sep 6.
7
Interrogating the repertoire: broadening the scope of peptide-MHC multimer analysis.
Nat Rev Immunol. 2011 Jul 15;11(8):551-8. doi: 10.1038/nri3020.
8
The tetramer transformation.
J Immunol. 2011 Jul 1;187(1):5-6. doi: 10.4049/jimmunol.1101297.
10
Structural basis of specificity and cross-reactivity in T cell receptors specific for cytochrome c-I-E(k).
J Immunol. 2011 May 15;186(10):5823-32. doi: 10.4049/jimmunol.1100197. Epub 2011 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验