Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.
Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.
Front Immunol. 2023 Dec 12;14:1301100. doi: 10.3389/fimmu.2023.1301100. eCollection 2023.
Advancements in sequencing technologies and bioinformatics algorithms have expanded our ability to identify tumor-specific somatic mutation-derived antigens (neoantigens). While recent studies have shown neoantigens to be compelling targets for cancer immunotherapy due to their foreign nature and high immunogenicity, the need for increasingly accurate and cost-effective approaches to rapidly identify neoantigens remains a challenging task, but essential for successful cancer immunotherapy. Currently, gene expression analysis and algorithms for variant calling can be used to generate lists of mutational profiles across patients, but more care is needed to curate these lists and prioritize the candidate neoantigens most capable of inducing an immune response. A growing amount of evidence suggests that only a handful of somatic mutations predicted by mutational profiling approaches act as immunogenic neoantigens. Hence, unbiased screening of all candidate neoantigens predicted by Whole Genome Sequencing/Whole Exome Sequencing may be necessary to more comprehensively access the full spectrum of immunogenic neoepitopes. Once putative cancer neoantigens are identified, one of the largest bottlenecks in translating these neoantigens into actionable targets for cell-based therapies is identifying the cognate T cell receptors (TCRs) capable of recognizing these neoantigens. While many TCR-directed screening and validation assays have utilized bulk samples in the past, there has been a recent surge in the number of single-cell assays that provide a more granular understanding of the factors governing TCR-pMHC interactions. The goal of this review is to provide an overview of existing strategies to identify candidate neoantigens using genomics-based approaches and methods for assessing neoantigen immunogenicity. Additionally, applications, prospects, and limitations of some of the current single-cell technologies will be discussed. Finally, we will briefly summarize some of the recent models that have been used to predict TCR antigen specificity and analyze the TCR receptor repertoire.
测序技术和生物信息算法的进步扩展了我们识别肿瘤特异性体细胞突变衍生抗原(新抗原)的能力。虽然最近的研究表明新抗原由于其外来性和高免疫原性成为癌症免疫治疗的有吸引力的靶点,但需要越来越准确和具有成本效益的方法来快速识别新抗原仍然是一项具有挑战性的任务,但对于成功的癌症免疫治疗至关重要。目前,可以使用基因表达分析和变异调用算法来生成跨患者的突变谱列表,但需要更多的关注来管理这些列表,并优先考虑最有能力诱导免疫反应的候选新抗原。越来越多的证据表明,只有少数由突变分析方法预测的体细胞突变可作为免疫原性新抗原。因此,可能需要对全基因组测序/全外显子组测序预测的所有候选新抗原进行无偏筛选,以更全面地获得免疫原性新表位的全谱。一旦确定了假定的癌症新抗原,将这些新抗原转化为基于细胞的治疗的可行靶标最大的瓶颈之一是鉴定能够识别这些新抗原的同源 T 细胞受体 (TCR)。虽然过去许多 TCR 定向筛选和验证测定法都利用了批量样本,但最近利用单细胞测定法的数量激增,这些方法提供了对调控 TCR-pMHC 相互作用的因素的更详细的理解。本综述的目的是提供使用基于基因组学的方法识别候选新抗原的现有策略概述,以及评估新抗原免疫原性的方法。此外,还将讨论一些当前单细胞技术的应用、前景和局限性。最后,我们将简要总结一些最近用于预测 TCR 抗原特异性和分析 TCR 受体库的模型。