Mahan Alison E, Jennewein Madeleine F, Suscovich Todd, Dionne Kendall, Tedesco Jacquelynne, Chung Amy W, Streeck Hendrik, Pau Maria, Schuitemaker Hanneke, Francis Don, Fast Patricia, Laufer Dagna, Walker Bruce D, Baden Lindsey, Barouch Dan H, Alter Galit
Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America.
Military HIV Research Program, Walter Reed Medical Research Institute, Bethesda, Maryland, United States of America.
PLoS Pathog. 2016 Mar 16;12(3):e1005456. doi: 10.1371/journal.ppat.1005456. eCollection 2016 Mar.
Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo. .
抗体效应功能,如抗体依赖性细胞毒性、补体沉积和抗体依赖性吞噬作用,在抵抗多种病原体的免疫过程中发挥关键作用,尤其是在缺乏中和活性的情况下。对IgG恒定区(Fc区)的两种修饰可调节抗体功能:抗体亚类的变化以及位于IgG Fc的CH2结构域中的单个N-连接聚糖的变化。这些修饰共同为先天免疫系统提供了一组特定指令,以指导清除与抗体结合的抗原。虽然很明显在自然感染过程中会积极调节亚类选择,但尚不清楚抗体糖基化是否可以以信号特异性或病原体特异性方式进行调节。在这里,我们表明在HIV感染期间,抗体糖基化是以抗原和病原体特异性方式确定的。此外,虽然不同地理位置的个体之间总的IgG糖基化存在显著差异,但免疫能够克服这些差异并引发具有相似抗体糖基化模式的抗原特异性抗体。此外,不同的疫苗接种方案诱导出不同的抗原特异性IgG糖基化谱,这表明抗体糖基化不仅可以编程,而且可以通过在B细胞启动过程中传递不同的炎症信号来进行调控。这些数据有力地表明,免疫系统以抗原特异性方式自然驱动抗体糖基化,并突出了一种有前景的方法,通过这种方法,下一代治疗药物和疫苗可以通过体内定向改变抗体糖基化来利用先天免疫系统的抗病毒活性。