Buono Rafael Andrade, Paez-Valencia Julio, Miller Nathan D, Goodman Kaija, Spitzer Christoph, Spalding Edgar P, Otegui Marisa S
Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706.
Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
Plant Physiol. 2016 May;171(1):251-64. doi: 10.1104/pp.16.00240. Epub 2016 Mar 16.
SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1-12). Within the ISTL1-6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality.
SKD1是通过转运所需内体分选复合体(ESCRT)途径降解质膜蛋白机制的核心组成部分。其ATP酶活性和内体募集受ESCRT组分LIP5和IST1调控。LIP5和IST1如何影响植物中ESCRT介导的内体运输和发育尚不清楚。在这里,我们利用拟南芥突变体证明LIP5控制质膜蛋白的组成型降解和内体腔内小泡的形成。虽然lip5突变体能够使生长素外排促进因子PIN2和PIN3极化,但在lip5根细胞中这两种蛋白都被错误分选到液泡膜。此外,lip5根细胞在质膜上过度积累PIN2。与PIN蛋白的运输缺陷一致,lip5根在重力刺激后的最初4小时内表现出异常的向重力性,反应增强。LIP5与IST1样蛋白1(ISTL1)发生物理相互作用,ISTL1是一种预测为酵母IST1的拟南芥同源物的蛋白。然而,我们发现拟南芥含有12个编码预测含IST1结构域蛋白(ISTL1 - 12)的基因。在ISTL1 - 6组中,在酵母双杂交试验中ISTL1与LIP5、SKD1以及ESCRT - III相关蛋白CHMP1A表现出最强的相互作用。通过对单突变体和双突变体的分析,我们发现LIP5与ISTL1而非ISTL2、3或6的合成相互作用对于正常植物生长、抑制自发细胞死亡和胚后致死性至关重要。