Suppr超能文献

物理楔形滤片对眼部质子束半影和射野内剂量均匀性的影响。

The influence of physical wedges on penumbra and in-field dose uniformity in ocular proton beams.

作者信息

Baker Colin, Kacperek Andrzej

机构信息

Radiotherapy Physics, The Royal Berkshire NHS Foundation Trust, Reading, UK.

National Centre for Eye Proton Therapy, The Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, UK.

出版信息

Phys Med. 2016 Apr;32(4):612-7. doi: 10.1016/j.ejmp.2016.01.001. Epub 2016 Mar 14.

Abstract

A physical wedge may be partially introduced into a proton beam when treating ocular tumours in order to improve dose conformity to the distal border of the tumour and spare the optic nerve. Two unwanted effects of this are observed: a predictable broadening of the beam penumbra on the wedged side of the field and, less predictably, an increase in dose within the field along a relatively narrow volume beneath the edge (toe) of the wedge, as a result of small-angle proton scatter. Monte Carlo simulations using MCNPX and direct measurements with radiochromic (GAFCHROMIC(®) EBT2) film were performed to quantify these effects for aluminium wedges in a 60 MeV proton beam as a function of wedge angle and position of the wedge relative to the patient. For extreme wedge angles (60° in eye tissue) and large wedge-to-patient distances (70 mm in this context), the 90-10% beam penumbra increased from 1.9 mm to 9.1 mm. In-field dose increases from small-angle proton scatter were found to contribute up to 21% additional dose, persisting along almost the full depth of the spread-out-Bragg peak. Profile broadening and in-field dose enhancement are both minimised by placing the wedge as close as possible to the patient. Use of lower atomic number wedge materials such as PMMA reduce the magnitude of both effects as a result of a reduced mean scattering angle per unit energy loss; however, their larger physical size and greater variation in density are undesirable.

摘要

在治疗眼部肿瘤时,可将物理楔形板部分插入质子束中,以提高肿瘤远端边界的剂量适形性并保护视神经。观察到这种做法有两个不良影响:在楔形板一侧的射野半值层可预测地变宽,以及较不可预测的是,由于小角度质子散射,在楔形板边缘(趾部)下方相对较窄的体积内,射野内剂量增加。使用MCNPX进行蒙特卡罗模拟,并使用放射变色(GAFCHROMIC(®) EBT2)胶片进行直接测量,以量化60 MeV质子束中铝楔形板的这些影响,作为楔形角和楔形板相对于患者位置的函数。对于极端楔形角(眼部组织中为60°)和较大的楔形板到患者距离(在此情况下为70 mm),90 - 10%射野半值层从1.9 mm增加到9.1 mm。发现小角度质子散射导致的射野内剂量增加可达额外剂量的21%,并沿扩展布拉格峰的几乎整个深度持续存在。通过将楔形板尽可能靠近患者放置,可使轮廓变宽和射野内剂量增强都最小化。使用较低原子序数的楔形材料,如聚甲基丙烯酸甲酯(PMMA),由于单位能量损失的平均散射角减小,可降低这两种影响的程度;然而,它们较大的物理尺寸和更大的密度变化是不理想的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验