Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, The Institute for Cereal Crop Improvement, Tel Aviv University, 69978, Tel Aviv, Israel.
Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, 03824, USA.
Theor Appl Genet. 2016 Jul;129(7):1303-1315. doi: 10.1007/s00122-016-2704-4. Epub 2016 Mar 18.
A major locus on the long arm of wheat chromosome 4B controls within-spikelet variation in both grain size and seed dormancy, the latter an important survival mechanism likely eliminated from wild wheat during domestication. Seed dormancy can increase the probability of survival of at least some progeny under unstable environmental conditions. In wild emmer wheat, only one of the two grains in a spikelet germinates during the first rainy season following maturation; and this within-plant variation in seed dormancy is associated with both grain dimension differences and position within the spikelet. Here, in addition to characterizing these associations, we elucidate the genetic mechanism controlling differential grain dimensions and dormancy within wild tetraploid wheat spikelets using phenotypic data from a wild emmer × durum wheat population and a high-density genetic map. We show that in wild emmer, the lower grain within the spikelet is about 30 % smaller and more dormant than the larger, upper grain that germinates usually within 3 days. We identify a major locus on the long arm of chromosome 4B that explains >40 % of the observed variation in grain dimensions and seed dormancy within spikelets. This locus, designated QGD-4BL, is validated using an independent set of wild emmer × durum wheat genetic stocks. The domesticated variant of this novel locus on chromosome 4B, likely fixed during the process of wheat domestication, favors spikelets with seeds of uniform size and synchronous germination. The identification of locus QGD-4BL enhances our knowledge of the genetic basis of the domestication syndrome of one of our most important crops.
一个位于小麦 4B 染色体长臂上的主要基因座控制着小穗内籽粒大小和种子休眠的变化,后者是一种重要的生存机制,在驯化过程中可能从野生小麦中消失。种子休眠可以增加至少一些后代在不稳定环境条件下生存的概率。在野生二粒小麦中,只有小穗中的两个籽粒中的一个在成熟后的第一个雨季期间发芽;这种植物内种子休眠的变异性与籽粒尺寸差异和小穗内的位置都有关。在这里,除了描述这些关联外,我们还利用野生二粒小麦与硬粒小麦群体的表型数据和高密度遗传图谱,阐明了控制野生四倍体小麦小穗内不同籽粒尺寸和休眠的遗传机制。我们表明,在野生二粒小麦中,小穗内下部籽粒比通常在 3 天内发芽的较大上部籽粒小约 30%,休眠程度更高。我们在 4B 染色体的长臂上鉴定出一个主要基因座,该基因座可以解释小穗内籽粒尺寸和休眠变化的 40%以上。该基因座被命名为 QGD-4BL,使用一组独立的野生二粒小麦与硬粒小麦遗传资源进行了验证。该基因座在染色体 4B 上的驯化变体,可能在小麦驯化过程中固定下来,有利于具有均匀大小和同步发芽种子的小穗。QGD-4BL 基因座的鉴定增强了我们对我们最重要的作物之一的驯化综合征遗传基础的认识。