Hernán Miguel A, Robins James M
Am J Epidemiol. 2016 Apr 15;183(8):758-64. doi: 10.1093/aje/kwv254. Epub 2016 Mar 18.
Ideally, questions about comparative effectiveness or safety would be answered using an appropriately designed and conducted randomized experiment. When we cannot conduct a randomized experiment, we analyze observational data. Causal inference from large observational databases (big data) can be viewed as an attempt to emulate a randomized experiment-the target experiment or target trial-that would answer the question of interest. When the goal is to guide decisions among several strategies, causal analyses of observational data need to be evaluated with respect to how well they emulate a particular target trial. We outline a framework for comparative effectiveness research using big data that makes the target trial explicit. This framework channels counterfactual theory for comparing the effects of sustained treatment strategies, organizes analytic approaches, provides a structured process for the criticism of observational studies, and helps avoid common methodologic pitfalls.
理想情况下,关于比较有效性或安全性的问题应通过设计合理且实施得当的随机试验来回答。当我们无法进行随机试验时,就会分析观察性数据。从大型观察性数据库(大数据)进行因果推断可被视为一种尝试,即模拟一个能回答感兴趣问题的随机试验——目标试验。当目标是在多种策略中指导决策时,观察性数据的因果分析需要根据它们对特定目标试验的模拟程度来评估。我们概述了一个使用大数据进行比较有效性研究的框架,该框架明确了目标试验。这个框架运用反事实理论来比较持续治疗策略的效果,组织分析方法,为观察性研究的批判提供了一个结构化过程,并有助于避免常见的方法学陷阱。