Suppr超能文献

胎盘功能不全对胎儿骨骼肌生长的影响。

Impact of placental insufficiency on fetal skeletal muscle growth.

作者信息

Brown Laura D, Hay William W

机构信息

Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus F441, Perinatal Research Center, 13243 East 23rd Avenue, Aurora, CO 80045, United States.

出版信息

Mol Cell Endocrinol. 2016 Nov 5;435:69-77. doi: 10.1016/j.mce.2016.03.017. Epub 2016 Mar 16.

Abstract

Intrauterine growth restriction (IUGR) caused by placental insufficiency is one of the most common and complex problems in perinatology, with no known cure. In pregnancies affected by placental insufficiency, a poorly functioning placenta restricts nutrient supply to the fetus and prevents normal fetal growth. Among other significant deficits in organ development, the IUGR fetus characteristically has less lean body and skeletal muscle mass than their appropriately-grown counterparts. Reduced skeletal muscle growth is not fully compensated after birth, as individuals who were born small for gestational age (SGA) from IUGR have persistent reductions in muscle mass and strength into adulthood. The consequences of restricted muscle growth and accelerated postnatal "catch-up" growth in the form of adiposity may contribute to the increased later life risk for visceral adiposity, peripheral insulin resistance, diabetes, and cardiovascular disease in individuals who were formerly IUGR. This review will discuss how an insufficient placenta results in impaired fetal skeletal muscle growth and how lifelong reductions in muscle mass might contribute to increased metabolic disease risk in this vulnerable population.

摘要

胎盘功能不全导致的胎儿宫内生长受限(IUGR)是围产医学中最常见且复杂的问题之一,目前尚无治愈方法。在受胎盘功能不全影响的妊娠中,功能不佳的胎盘会限制对胎儿的营养供应,阻碍胎儿正常生长。在器官发育的其他显著缺陷中,IUGR胎儿的瘦体重和骨骼肌量通常比生长正常的胎儿少。骨骼肌生长减少在出生后无法完全代偿,因为因IUGR而出生时小于胎龄(SGA)的个体,其肌肉量和力量在成年后仍持续降低。肌肉生长受限以及以肥胖形式出现的加速出生后“追赶”生长,可能会导致曾患IUGR的个体日后患内脏肥胖、外周胰岛素抵抗、糖尿病和心血管疾病的风险增加。本综述将讨论胎盘功能不全会如何导致胎儿骨骼肌生长受损,以及肌肉量的终身减少可能如何导致这一脆弱人群患代谢性疾病的风险增加。

相似文献

1
Impact of placental insufficiency on fetal skeletal muscle growth.
Mol Cell Endocrinol. 2016 Nov 5;435:69-77. doi: 10.1016/j.mce.2016.03.017. Epub 2016 Mar 16.
3
Rates of myogenesis and myofiber numbers are reduced in late gestation IUGR fetal sheep.
J Endocrinol. 2019 Dec 19;244(2):339-352. doi: 10.1530/JOE-19-0273.
6
Placental restriction of fetal growth reduces size at birth and alters postnatal growth, feeding activity, and adiposity in the young lamb.
Am J Physiol Regul Integr Comp Physiol. 2007 Feb;292(2):R875-86. doi: 10.1152/ajpregu.00430.2006. Epub 2006 Oct 5.
8
Skeletal Muscle Damage in Intrauterine Growth Restriction.
Adv Exp Med Biol. 2018;1088:93-106. doi: 10.1007/978-981-13-1435-3_5.
9
Role of placental insufficiency and intrauterine growth restriction on the activation of fetal hepatic glucose production.
Mol Cell Endocrinol. 2016 Nov 5;435:61-68. doi: 10.1016/j.mce.2015.12.016. Epub 2015 Dec 23.
10
Dimming the Powerhouse: Mitochondrial Dysfunction in the Liver and Skeletal Muscle of Intrauterine Growth Restricted Fetuses.
Front Endocrinol (Lausanne). 2021 May 17;12:612888. doi: 10.3389/fendo.2021.612888. eCollection 2021.

引用本文的文献

1
Growth Failure in Children with Congenital Heart Disease.
Children (Basel). 2025 May 9;12(5):616. doi: 10.3390/children12050616.
2
The characteristics, influence factors, and regulatory strategies of growth retardation in ruminants: a review.
Front Vet Sci. 2025 Mar 26;12:1566427. doi: 10.3389/fvets.2025.1566427. eCollection 2025.
4
Maternal gut Bifidobacterium breve modifies fetal brain metabolism in germ-free mice.
Mol Metab. 2024 Oct;88:102004. doi: 10.1016/j.molmet.2024.102004. Epub 2024 Aug 8.
5
Insulin resistance and dyslipidemia in low-birth-weight goat kids.
Front Vet Sci. 2024 Mar 26;11:1370640. doi: 10.3389/fvets.2024.1370640. eCollection 2024.
7
Four Markers Useful for the Distinction of Intrauterine Growth Restriction in Sheep.
Animals (Basel). 2023 Oct 24;13(21):3305. doi: 10.3390/ani13213305.
8
Metabolic and fecal microbial changes in adult fetal growth restricted mice.
Pediatr Res. 2024 Feb;95(3):647-659. doi: 10.1038/s41390-023-02869-8. Epub 2023 Nov 7.
10
Characteristics of microRNAs in Skeletal Muscle of Intrauterine Growth-Restricted Pigs.
Genes (Basel). 2023 Jun 28;14(7):1372. doi: 10.3390/genes14071372.

本文引用的文献

1
Intrauterine Growth Restriction, Head Size at Birth, and Outcome in Very Preterm Infants.
J Pediatr. 2015 Nov;167(5):975-81.e2. doi: 10.1016/j.jpeds.2015.08.025. Epub 2015 Sep 15.
2
Paternally Inherited IGF2 Mutation and Growth Restriction.
N Engl J Med. 2015 Jul 23;373(4):349-56. doi: 10.1056/NEJMoa1415227. Epub 2015 Jul 8.
3
The Impact of Neonatal Illness on Nutritional Requirements-One Size Does Not Fit All.
Curr Pediatr Rep. 2014 Dec;2(4):248-254. doi: 10.1007/s40124-014-0059-3.
4
Muscle stem cells at a glance.
J Cell Sci. 2014 Nov 1;127(Pt 21):4543-8. doi: 10.1242/jcs.151209. Epub 2014 Oct 9.
5
Developmental programming of fetal skeletal muscle and adipose tissue development.
J Genomics. 2013 Nov 8;1:29-38. doi: 10.7150/jgen.3930. eCollection 2013.
7
Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health.
J Endocrinol. 2014 Apr 22;221(2):R13-29. doi: 10.1530/JOE-13-0567. Print 2014 May.
9
ACOG Practice bulletin no. 134: fetal growth restriction.
Obstet Gynecol. 2013 May;121(5):1122-1133. doi: 10.1097/01.AOG.0000429658.85846.f9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验