Phang Sen Han, Ravani Pietro, Schaefer Jeffrey, Wright Bruce, McLaughlin Kevin
Department of Medicine, University of Calgary, Calgary, Alberta.
Office of Undergraduate Medical Education, University of Calgary, Calgary, Alberta.
Can Med Educ J. 2015 Dec 11;6(2):e71-7. eCollection 2015.
Training in Bayesian reasoning may have limited impact on accuracy of probability estimates. In this study, our goal was to explore whether residents previously exposed to Bayesian reasoning use heuristics rather than Bayesian reasoning to estimate disease probabilities. We predicted that if residents use heuristics then post-test probability estimates would be increased by non-discriminating clinical features or a high anchor for a target condition.
We randomized 55 Internal Medicine residents to different versions of four clinical vignettes and asked them to estimate probabilities of target conditions. We manipulated the clinical data for each vignette to be consistent with either 1) using a representative heuristic, by adding non-discriminating prototypical clinical features of the target condition, or 2) using anchoring with adjustment heuristic, by providing a high or low anchor for the target condition.
When presented with additional non-discriminating data the odds of diagnosing the target condition were increased (odds ratio (OR) 2.83, 95% confidence interval [1.30, 6.15], p = 0.009). Similarly, the odds of diagnosing the target condition were increased when a high anchor preceded the vignette (OR 2.04, [1.09, 3.81], p = 0.025).
Our findings suggest that despite previous exposure to the use of Bayesian reasoning, residents use heuristics, such as the representative heuristic and anchoring with adjustment, to estimate probabilities. Potential reasons for attribute substitution include the relative cognitive ease of heuristics vs. Bayesian reasoning or perhaps residents in their clinical practice use gist traces rather than precise probability estimates when diagnosing.
贝叶斯推理训练对概率估计准确性的影响可能有限。在本研究中,我们的目标是探讨先前接触过贝叶斯推理的住院医师是否使用启发式方法而非贝叶斯推理来估计疾病概率。我们预测,如果住院医师使用启发式方法,那么测试后概率估计将因非区分性临床特征或目标疾病的高锚定值而增加。
我们将55名内科住院医师随机分配到四个临床病例 vignette 的不同版本,并要求他们估计目标疾病的概率。我们对每个 vignette 的临床数据进行处理,使其符合以下两种情况之一:1)使用代表性启发式方法,即添加目标疾病的非区分性典型临床特征;2)使用锚定与调整启发式方法,即为目标疾病提供高或低的锚定值。
当呈现额外的非区分性数据时,诊断目标疾病的几率增加(优势比(OR)2.83,95%置信区间[1.30, 6.15],p = 0.009)。同样,当 vignette 之前有一个高锚定值时,诊断目标疾病的几率也增加(OR 2.04,[1.09, 3.81],p = 0.025)。
我们的研究结果表明,尽管住院医师先前接触过贝叶斯推理的使用,但他们使用启发式方法,如代表性启发式方法和锚定与调整,来估计概率。属性替代的潜在原因包括启发式方法相对于贝叶斯推理在认知上相对容易,或者也许住院医师在临床实践中诊断时使用的是要点线索而非精确的概率估计。