López-Rojas Rafael, Fernández-Cuenca Felipe, Serrano-Rocha Lara, Pascual Álvaro
Unidad Intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain.
Unidad Intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain.
Enferm Infecc Microbiol Clin. 2017 Jan;35(1):12-19. doi: 10.1016/j.eimc.2016.02.008. Epub 2016 Mar 19.
To determine the in vitro activity of a polyhexanide-betaine solution against collection strains and multidrug-resistant (MDR) nosocomial isolates, including high-risk clones.
We studied of 8 ATCC and 21 MDR clinical strains of Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, including the multiresistant high-risk clones. The MICs and MBCs of a 0.1% polyhexanide-0.1% betaine solution were determined by microdilution. For each species, strains with the highest MICs were selected for further experiments. The dilution-neutralization test (PrEN 12054) was performed by incubating bacterial inocula of 10CFU/mL for 1min with undiluted 0.1% polyhexanide-betaine solution. The CFUs were counted after neutralization. Growth curves and time-kill curves at concentrations of 0.25, 1, 4, and 8×MIC, were performed. MICs of recovered strains were determined when regrowth was observed in time-kill studies after 24h of incubation. Strains with reduced susceptibility were selected by serial passage on plates with increasing concentrations of polyhexanide-betaine, and MICs were determined.
Polyhexanide-betaine MIC range was 0.5-8mg/L. MBCs equalled or were 1 dilution higher than MICs. The dilution-neutralization method showed total inoculum clearance of all strains. In time-kill curves, no regrowth was observed at 4×MIC, except for S. aureus (8×MIC). Increased MICs were not observed in time-kill curves, or after serial passages after exposure to polyhexanide-betaine.
Polyhexanide-betaine presented bactericidal activity against all MDR clinical isolates tested, including high-risk clones, at significantly lower concentrations and time of activity than those commercially used.
测定聚己缩胍-甜菜碱溶液对标准菌株及多重耐药(MDR)医院分离株(包括高风险克隆株)的体外活性。
我们研究了8株ATCC菌株以及21株金黄色葡萄球菌、粪肠球菌、屎肠球菌、大肠杆菌、阴沟肠杆菌、肺炎克雷伯菌、鲍曼不动杆菌和铜绿假单胞菌的MDR临床菌株,包括多重耐药高风险克隆株。通过微量稀释法测定0.1%聚己缩胍-0.1%甜菜碱溶液的最低抑菌浓度(MIC)和最低杀菌浓度(MBC)。对于每个菌种,选择MIC最高的菌株进行进一步实验。稀释中和试验(PrEN 12054)通过将10CFU/mL的细菌接种物与未稀释的0.1%聚己缩胍-甜菜碱溶液孵育1分钟来进行。中和后计算菌落形成单位(CFU)。进行了浓度为0.25、1、4和8×MIC时的生长曲线和时间-杀菌曲线实验。在孵育24小时后的时间-杀菌研究中观察到再生长时,测定复苏菌株的MIC。通过在含有浓度递增的聚己缩胍-甜菜碱的平板上连续传代来选择敏感性降低的菌株,并测定MIC。
聚己缩胍-甜菜碱的MIC范围为0.5 - 8mg/L。MBC等于或比MIC高1个稀释度。稀释中和法显示所有菌株的接种物均被完全清除。在时间-杀菌曲线中,除金黄色葡萄球菌(8×MIC)外,在4×MIC时未观察到再生长。在时间-杀菌曲线中或暴露于聚己缩胍-甜菜碱后连续传代后,未观察到MIC增加。
聚己缩胍-甜菜碱对所有测试的MDR临床分离株(包括高风险克隆株)均呈现杀菌活性,其浓度和活性时间显著低于商业使用的产品。