López de Armentia María Milagros, Amaya Celina, Colombo María Isabel
Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, 5500 Mendoza, Argentina.
Cells. 2016 Mar 8;5(1):11. doi: 10.3390/cells5010011.
Autophagy is an intracellular process that comprises degradation of damaged organelles, protein aggregates and intracellular pathogens, having an important role in controlling the fate of invading microorganisms. Intracellular pathogens are internalized by professional and non-professional phagocytes, localizing in compartments called phagosomes. To degrade the internalized microorganism, the microbial phagosome matures by fusion events with early and late endosomal compartments and lysosomes, a process that is regulated by Rab GTPases. Interestingly, in order to survive and replicate in the phagosome, some pathogens employ different strategies to manipulate vesicular traffic, inhibiting phagolysosomal biogenesis (e.g., Staphylococcus aureus and Mycobacterium tuberculosis) or surviving in acidic compartments and forming replicative vacuoles (e.g., Coxiella burnetti and Legionella pneumophila). The bacteria described in this review often use secretion systems to control the host's response and thus disseminate. To date, eight types of secretion systems (Type I to Type VIII) are known. Some of these systems are used by bacteria to translocate pathogenic proteins into the host cell and regulate replicative vacuole formation, apoptosis, cytokine responses, and autophagy. Herein, we have focused on how bacteria manipulate small Rab GTPases to control many of these processes. The growing knowledge in this field may facilitate the development of new treatments or contribute to the prevention of these types of bacterial infections.
自噬是一种细胞内过程,包括对受损细胞器、蛋白质聚集体和细胞内病原体的降解,在控制入侵微生物的命运方面发挥着重要作用。细胞内病原体被专业和非专业吞噬细胞内化,定位在称为吞噬体的区室中。为了降解内化的微生物,微生物吞噬体通过与早期和晚期内体区室以及溶酶体的融合事件而成熟,这一过程由Rab GTP酶调节。有趣的是,为了在吞噬体中存活和复制,一些病原体采用不同策略来操纵囊泡运输,抑制吞噬溶酶体的生物发生(例如金黄色葡萄球菌和结核分枝杆菌),或在酸性区室中存活并形成复制性液泡(例如贝氏考克斯氏体和嗜肺军团菌)。本综述中描述的细菌通常利用分泌系统来控制宿主反应并从而传播。迄今为止,已知有八种类型的分泌系统(I型至VIII型)。其中一些系统被细菌用于将致病蛋白转运到宿主细胞中,并调节复制性液泡的形成、细胞凋亡、细胞因子反应和自噬。在此,我们重点关注细菌如何操纵小Rab GTP酶来控制其中许多过程。该领域不断增长的知识可能会促进新治疗方法的开发或有助于预防这类细菌感染。