Stojkovic Slobodanka, Beardall John, Matear Richard
CMAR--CSIRO, Hobart, Tas, 7001, Australia.
School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia.
J Phycol. 2013 Aug;49(4):670-9. doi: 10.1111/jpy.12074. Epub 2013 May 15.
Rising global CO2 is changing the carbonate chemistry of seawater, which is expected to influence the way phytoplankton acquire inorganic carbon. All phytoplankton rely on ribulose-bisphosphate carboxylase oxygenase (RUBISCO) for assimilation of inorganic carbon in photosynthesis, but this enzyme is inefficient at present day CO2 levels. Many algae have developed a range of energy demanding mechanisms, referred to as carbon concentrating mechanisms (CCMs), which increase the efficiency of carbon acquisition. We investigated CCM activity in three southern hemisphere strains of the coccolithophorid Emiliania huxleyi W. W. Hay & H. P. Mohler. Both calcifying and non-calcifying strains showed strong CCM activity, with HCO3 (-) as a preferred source of photosynthetic carbon in the non-calcifying strain, but a higher preference for CO2 in the calcifying strains. All three strains were characterized by the presence of pyrenoids, external carbonic anhydrase (CA) and high affinity for CO2 in photosynthesis, indicative of active CCMs. We postulate that under higher CO2 levels cocco-lithophorids will be able to down-regulate their CCMs, and re-direct some of the metabolic energy to processes such as calcification. Due to the expected rise in CO2 levels, photosynthesis in calcifying strains is expected to benefit most, due to their use of CO2 for carbon uptake. The non-calcifying strain, on the other hand, will experience only a 10% increase in HCO3 (-) , thus making it less responsive to changes in carbonate chemistry of water.
全球二氧化碳水平的上升正在改变海水的碳酸盐化学性质,这有望影响浮游植物获取无机碳的方式。所有浮游植物在光合作用中依靠核酮糖-1,5-二磷酸羧化酶加氧酶(RUBISCO)来同化无机碳,但在当前的二氧化碳水平下这种酶效率不高。许多藻类已经发展出一系列需要能量的机制,即碳浓缩机制(CCM),以提高碳获取效率。我们研究了球石藻赫氏艾氏藻(Emiliania huxleyi W. W. Hay & H. P. Mohler)南半球三个菌株的CCM活性。钙化菌株和非钙化菌株均表现出很强的CCM活性,在非钙化菌株中,碳酸氢根离子(HCO3 (-))是光合作用碳的首选来源,但钙化菌株对二氧化碳的偏好更高。所有三个菌株的特征均为存在蛋白核、外部碳酸酐酶(CA)以及光合作用中对二氧化碳的高亲和力,这表明存在活跃的CCM。我们推测,在更高的二氧化碳水平下,球石藻将能够下调其CCM,并将一些代谢能量重新导向钙化等过程。由于预计二氧化碳水平会上升,钙化菌株的光合作用预计将受益最大,因为它们利用二氧化碳进行碳吸收。另一方面,非钙化菌株的碳酸氢根离子(HCO3 (-))只会增加10%,因此它对水的碳酸盐化学变化的反应较小。