Suppr超能文献

基于高斯混合模型的骨形状二维-三维配准用于骨科手术规划。

Gaussian mixture models based 2D-3D registration of bone shapes for orthopedic surgery planning.

作者信息

Valenti Marta, Ferrigno Giancarlo, Martina Dario, Yu Weimin, Zheng Guoyan, Shandiz Mohsen Akbari, Anglin Carolyn, De Momi Elena

机构信息

Department of Electronics, Information and Bioengineering, Politecnico di Milano, via Colombo 40, 20133, Milan, Italy.

Universität Bern, Staffaucherstr. 78, 3014, Bern, CH, Switzerland.

出版信息

Med Biol Eng Comput. 2016 Nov;54(11):1727-1740. doi: 10.1007/s11517-016-1460-6. Epub 2016 Mar 23.

Abstract

In orthopedic surgery, precise kinematics assessment helps the diagnosis and the planning of the intervention. The correct placement of the prosthetic component in the case of knee replacement is necessary to ensure a correct load distribution and to avoid revision of the implant. 3D reconstruction of the knee kinematics under weight-bearing conditions becomes fundamental to understand existing in vivo loads and improve the joint motion tracking. Existing methods rely on the semiautomatic positioning of a shape previously segmented from a CT or MRI on a sequence of fluoroscopic images acquired during knee flexion. We propose a method based on statistical shape models (SSM) automatically superimposed on a sequence of fluoroscopic datasets. Our method is based on Gaussian mixture models, and the core of the algorithm is the maximization of the likelihood of the association between the projected silhouette and the extracted contour from the fluoroscopy image. We evaluated the algorithm using digitally reconstructed radiographies of both healthy and diseased subjects, with a CT-extracted shape and a SSM as the 3D model. In vivo tests were done with fluoroscopically acquired images and subject-specific CT shapes. The results obtained are in line with the literature, but the computational time is substantially reduced.

摘要

在骨科手术中,精确的运动学评估有助于诊断和干预方案的规划。在膝关节置换手术中,正确放置假体部件对于确保正确的负荷分布和避免植入物翻修至关重要。在负重条件下对膝关节运动学进行三维重建对于了解体内现有负荷和改善关节运动跟踪至关重要。现有方法依赖于将先前从CT或MRI中分割出的形状半自动定位到膝关节屈曲过程中采集的一系列荧光透视图像上。我们提出了一种基于统计形状模型(SSM)的方法,该方法可自动叠加在一系列荧光透视数据集上。我们的方法基于高斯混合模型,算法的核心是使投影轮廓与从荧光透视图像中提取的轮廓之间关联的似然性最大化。我们使用健康和患病受试者的数字重建射线照片、以CT提取的形状和SSM作为三维模型对该算法进行了评估。体内测试使用荧光透视采集的图像和特定受试者的CT形状进行。获得的结果与文献一致,但计算时间大幅减少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验