Bhattacharya Debashish, Price Dana C, Bicep Cedric, Bapteste Eric, Sarwade Mihir, Rajah Veeran D, Yoon Hwan Su
Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, New Brunswick, New Jersey, 08901, USA.
Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7138, Systématique, Adaptation, Evolution, Université Pierre et Marie Curie, Paris, 75005, France.
J Phycol. 2013 Feb;49(1):207-12. doi: 10.1111/jpy.12028. Epub 2013 Jan 10.
Analysis of microbial biodiversity is hampered by a lack of reference genomes from most bacteria, viruses, and algae. This necessitates either the cultivation of a restricted number of species for standard sequencing projects or the analysis of highly complex environmental DNA metagenome data. Single-cell genomics (SCG) offers a solution to this problem by constraining the studied DNA sample to an individual cell and its associated symbionts, prey, and pathogens. We used SCG to study marine heterotrophic amoebae related to Paulinella ovalis (A. Wulff) P.W. Johnson, P.E. Hargraves & J.M. Sieburth (Rhizaria). The genus Paulinella is best known for its photosynthetic members such as P. chromatophora Lauterborn that is the only case of plastid primary endosymbiosis known outside of algae and plants. Here, we studied the phagotrophic sister taxa of P. chromatophora that are related to P. ovalis and found one SCG assembly to contain α-cyanobacterial DNA. These cyanobacterial contigs are presumably derived from prey. We also uncovered an associated cyanophage lineage (provisionally named phage PoL_MC2). Phylogenomic analysis of the fragmented genome assembly suggested a minimum genome size of 200 Kbp for phage PoL_MC2 that encodes 179 proteins and is most closely related to Synechococcus phage S-SM2. For this phage, gene network analysis demonstrates a highly modular genome structure typical of other cyanophages. Our work demonstrates that SCG is a powerful approach for discovering algal and protist biodiversity and for elucidating biotic interactions in natural samples.
大多数细菌、病毒和藻类缺乏参考基因组,这阻碍了微生物生物多样性的分析。这就需要要么为标准测序项目培养数量有限的物种,要么分析高度复杂的环境DNA宏基因组数据。单细胞基因组学(SCG)通过将研究的DNA样本限制在单个细胞及其相关的共生体、猎物和病原体中来解决这个问题。我们使用SCG来研究与卵形保罗氏变形虫(A. Wulff)P.W. 约翰逊、P.E. 哈格雷夫斯和J.M. 西伯思(根足虫纲)相关的海洋异养变形虫。保罗氏变形虫属最出名的是其光合成员,如嗜盐保罗氏变形虫,它是藻类和植物之外已知的唯一质体初级内共生的例子。在这里,我们研究了与卵形保罗氏变形虫相关的嗜食性姐妹分类群,发现一个SCG组装体包含α-蓝细菌DNA。这些蓝细菌重叠群可能来自猎物。我们还发现了一个相关的蓝噬菌体谱系(暂命名为噬菌体PoL_MC2)。对片段化基因组组装体的系统基因组分析表明,噬菌体PoL_MC2的最小基因组大小为200 Kbp,编码179种蛋白质,与聚球藻噬菌体S-SM2关系最为密切。对于这种噬菌体,基因网络分析显示出典型的其他蓝噬菌体的高度模块化基因组结构。我们的工作表明,SCG是发现藻类和原生生物生物多样性以及阐明自然样本中生物相互作用的有力方法。