Suppr超能文献

微生物对土壤有机质矿化对北极气候变化处理中易位碳响应的控制。

Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments.

机构信息

Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.

Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen, Denmark.

出版信息

Glob Chang Biol. 2016 Dec;22(12):4150-4161. doi: 10.1111/gcb.13296. Epub 2016 Apr 24.

Abstract

Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed 'priming'. We investigated how warming (+1.1 °C over ambient using open top chambers) and litter addition (90 g m  yr ) treatments in the subarctic influenced the susceptibility of SOM mineralization to priming, and its microbial underpinnings. Labile C appeared to inhibit the mineralization of C from SOM by up to 60% within hours. In contrast, the mineralization of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile C inhibited C mineralization is compatible with previously reported findings termed 'preferential substrate utilization' or 'negative apparent priming', while the stimulated N mineralization responses echo recent reports of 'real priming' of SOM mineralization. However, C and N mineralization responses derived from the same SOM source must be interpreted together: This suggested that the microbial SOM-use decreased in magnitude and shifted to components richer in N. This finding highlights that only considering SOM in terms of C may be simplistic, and will not capture all changes in SOM decomposition. The selective mining for N increased in climate change treatments with higher fungal dominance. In conclusion, labile C appeared to trigger catabolic responses of the resident microbial community that shifted the SOM mining to N-rich components; an effect that increased with higher fungal dominance. Extrapolating from these findings, the predicted shrub expansion in the subarctic could result in an altered microbial use of SOM, selectively mining it for N-rich components, and leading to a reduced total SOM-use.

摘要

全球一半的土壤碳(C)存在于高纬度系统中。气候变化将使这些地区受到变暖的影响,并向具有更多不稳定 C 输入的植物群落转变。不稳定的 C 还会增加原生土壤有机质(SOM)损失的速度;这一现象被称为“激发”。我们研究了在亚北极地区,增温(使用开顶式气室使温度比环境温度升高 1.1°C)和添加凋落物(90g m 年)处理如何影响 SOM 矿化对激发的敏感性及其微生物基础。不稳定的 C 在数小时内似乎抑制了高达 60%的 SOM 碳矿化。相比之下,SOM 氮矿化的刺激高达 300%。这些反应发生得很快,与微生物演替动态无关,表明这是分解代谢反应。单独考虑,不稳定的 C 抑制 C 矿化与之前报道的“优先基质利用”或“负表观激发”的发现是一致的,而刺激的 N 矿化反应则与最近关于 SOM 矿化的“真实激发”的报道相呼应。然而,来自同一 SOM 源的 C 和 N 矿化反应必须一起解释:这表明微生物对 SOM 的利用减少了,转向了氮含量更高的成分。这一发现强调了仅根据 C 来考虑 SOM 可能过于简单化,并且不会捕捉到 SOM 分解的所有变化。在真菌优势更高的气候变化处理中,对 N 的选择性挖掘增加了。总之,不稳定的 C 似乎触发了驻留微生物群落的分解代谢反应,将 SOM 的挖掘转向氮含量较高的成分;这种效应随着真菌优势的增加而增加。从这些发现推断,亚北极地区预计的灌木扩张可能导致微生物对 SOM 的利用发生变化,对富含氮的成分进行选择性挖掘,并导致 SOM 总利用率降低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验