Suppr超能文献

模拟根际沉积物会引发微生物的氮矿化,这可能加速亚北极地区的灌木化。

Simulated rhizosphere deposits induce microbial N-mining that may accelerate shrubification in the subarctic.

机构信息

Section of Microbial Ecology, Department of Biology, Lund University, Ecology Building, Lund, 223 62, Sweden.

Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, DK-2100, Denmark.

出版信息

Ecology. 2020 Sep;101(9):e03094. doi: 10.1002/ecy.3094. Epub 2020 Jun 9.

Abstract

Climate change is exposing high-latitude systems to warming and a shift towards more shrub-dominated plant communities, resulting in increased leaf-litter inputs at the soil surface, and more labile root-derived organic matter (OM) input in the soil profile. Labile OM can stimulate the mineralization of soil organic matter (SOM); a phenomenon termed "priming." In N-poor subarctic soils, it is hypothesized that microorganisms may "prime" SOM in order to acquire N (microbial N-mining). Increased leaf-litter inputs with a high C/N ratio might further exacerbate microbial N demand, and increase the susceptibility of N-poor soils to N-mining. We investigated the N-control of SOM mineralization by amending soils from climate change-simulation treatments in the subarctic (+1.1°C warming, birch litter addition, willow litter addition, and fungal sporocarp addition) with labile OM either in the form of glucose (labile C; equivalent to 400 µg C/g fresh [fwt] soil) or alanine (labile C + N; equivalent to 400 µg C and 157 µg N/g fwt soil), to simulate rhizosphere inputs. Surprisingly, we found that despite 5 yr of simulated climate change treatments, there were no significant effects of the field-treatments on microbial process rates, community structure or responses to labile OM. Glucose primed the mineralization of both C and N from SOM, but gross mineralization of N was stimulated more than that of C, suggesting that microbial SOM use increased in magnitude and shifted to components richer in N (i.e., selective microbial N-mining). The addition of alanine also resulted in priming of both C and N mineralization, but the N mineralization stimulated by alanine was greater than that stimulated by glucose, indicating strong N-mining even when a source of labile OM including N was supplied. Microbial carbon use efficiency was reduced in response to both labile OM inputs. Overall, these findings suggest that shrub expansion could fundamentally alter biogeochemical cycling in the subarctic, yielding more N available for plant uptake in these N-limited soils, thus driving positive plant-soil feedbacks.

摘要

气候变化使高纬度系统面临变暖趋势和向以灌木为主的植物群落转变,导致土壤表面的叶凋落物输入增加,土壤剖面中更不稳定的根系衍生有机物质(OM)输入增加。不稳定的 OM 可以刺激土壤有机物质(SOM)的矿化;这一现象被称为“激发”。在氮贫北极土壤中,假设微生物可能会“激发” SOM 以获取氮(微生物氮矿化)。高 C/N 比的叶凋落物输入可能会进一步加剧微生物对氮的需求,并增加氮贫土壤对氮矿化的敏感性。我们通过用易降解的 OM(葡萄糖,即相当于 400µg C/g 新鲜(fwt)土壤;或丙氨酸,即相当于 400µg C 和 157µg N/g fwt 土壤)来修改北极地区的气候变化模拟处理土壤(+1.1°C 变暖、桦树凋落物添加、柳树凋落物添加和真菌子实体添加),来研究 SOM 矿化的氮控制,以模拟根际输入。令人惊讶的是,尽管经过了 5 年的模拟气候变化处理,但野外处理对微生物过程速率、群落结构或对易降解 OM 的反应没有显著影响。葡萄糖激发了 SOM 中 C 和 N 的矿化,但 N 的总矿化比 C 更受激发,这表明微生物对 SOM 的利用在数量上增加了,并转移到含氮量更高的成分上(即选择性微生物氮矿化)。添加丙氨酸也导致 C 和 N 矿化的激发,但丙氨酸刺激的 N 矿化比葡萄糖刺激的更多,这表明即使提供了包括易降解 OM 在内的氮源,也会发生强烈的氮矿化。易降解 OM 的输入降低了微生物的碳利用效率。总的来说,这些发现表明,灌木的扩张可能从根本上改变北极地区的生物地球化学循环,使这些氮限制土壤中更多的氮可供植物吸收,从而驱动积极的植物-土壤反馈。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验