Suppr超能文献

基于多目标优化的温室气体与空气污染物协同减排模型

Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

作者信息

Meng Qing-chun, Rong Xiao-xia, Zhang Yi-min, Wan Xiao-le, Liu Yuan-yuan, Wang Yu-zhi

机构信息

School of Management, Shandong University, Jinan, Shandong 250100, China.

School of Mathematics, Shandong University, Jinan, Shandong 250100, China.

出版信息

PLoS One. 2016 Mar 24;11(3):e0152057. doi: 10.1371/journal.pone.0152057. eCollection 2016.

Abstract

CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

摘要

二氧化碳排放不仅影响全球气候变化,还影响国际经济和政治形势。因此,减少主要温室气体二氧化碳的排放,已成为中国乃至全球在保护环境生态方面的一个重大问题。煤炭、石油和天然气的能源消耗是产生温室气体以及二氧化硫和氮氧化物等空气污染物的主要原因,而这些污染物是中国主要的空气污染物。在本研究中,采用数学多目标优化方法,基于不同能源消耗方式下三种气体的共同约束条件,分析三种气体的协同减排情况,以制定经济、清洁和高效的能源分配方案。第一部分介绍了背景研究、三种气体的协同减排、多目标优化、主要数学建模和优化方法。第二部分讨论了本研究中使用的四种数学工具,包括用于分析空气质量与污染物排放之间因果关系的格兰杰因果检验、用于确定能源消耗与污染物排放定量关系的函数分析、用于建立考虑能源消耗的协同优化模型的多目标优化,以及用于设计最优极点算法并获得高效协同减排方案的多目标优化模型的最优性条件分析。在实证分析中,采用了1996 - 2012年天津市污染物排放和能源最终消费数据来验证模型的有效性,并分析有效解和相应的主导集。在最后一部分,提出了一些协同减排建议并阐述了所得结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1662/4806840/2daae6f8887d/pone.0152057.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验