Suppr超能文献

单胺氧化酶B催化多巴胺分解中氢/氘动力学同位素效应的路径积分模拟

Path Integral Simulation of the H/D Kinetic Isotope Effect in Monoamine Oxidase B Catalyzed Decomposition of Dopamine.

作者信息

Mavri Janez, Matute Ricardo A, Chu Zhen T, Vianello Robert

机构信息

Laboratory for Biocomputing and Bioinformatics, National Institute of Chemistry , Hajdrihova 19, SI-1000 Ljubljana, Slovenia.

University of Southern California , Department of Chemistry SGM 418, 3620 McClintock Avenue Los Angeles, California 90089-1062, United States.

出版信息

J Phys Chem B. 2016 Apr 14;120(14):3488-92. doi: 10.1021/acs.jpcb.6b00894. Epub 2016 Mar 31.

Abstract

Brain monoamines regulate many centrally mediated body functions, and can cause adverse symptoms when they are out of balance. A starting point to address challenges raised by the increasing burden of brain diseases is to understand, at atomistic level, the catalytic mechanism of an essential amine metabolic enzyme-monoamine oxidase B (MAO B). Recently, we demonstrated that the rate-limiting step of MAO B catalyzed conversion of amines into imines represents the hydride anion transfer from the substrate α-CH2 group to the N5 atom of the flavin cofactor moiety. In this article we simulated for MAO B catalyzed dopamine decomposition the effects of nuclear tunneling by the calculation of the H/D kinetic isotope effect. We applied path integral quantization of the nuclear motion for the methylene group and the N5 atom of the flavin moiety in conjunction with the QM/MM treatment on the empirical valence bond (EVB) level for the rest of the enzyme. The calculated H/D kinetic isotope effect of 12.8 ± 0.3 is in a reasonable agreement with the available experimental data for closely related biogenic amines, which gives strong support for the proposed hydride mechanism. The results are discussed in the context of tunneling in enzyme centers and advent of deuterated drugs into clinical practice.

摘要

脑单胺调节许多中枢介导的身体功能,当其失衡时会引起不良症状。应对脑部疾病日益增加的负担所带来的挑战的一个起点是,在原子水平上理解一种重要的胺代谢酶——单胺氧化酶B(MAO B)的催化机制。最近,我们证明了MAO B催化胺转化为亚胺的限速步骤是氢负离子从底物α-CH2基团转移到黄素辅因子部分的N5原子上。在本文中,我们通过计算H/D动力学同位素效应,模拟了MAO B催化多巴胺分解过程中核隧穿的影响。我们将核运动的路径积分量子化应用于亚甲基和黄素部分的N5原子,并结合对酶的其余部分在经验价键(EVB)水平上的QM/MM处理。计算得到的12.8±0.3的H/D动力学同位素效应与密切相关的生物胺的现有实验数据合理吻合,这为所提出的氢负离子机制提供了有力支持。本文将在酶中心的隧穿以及氘代药物进入临床实践的背景下讨论这些结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验