Suppr超能文献

经验通过组蛋白翻译后修饰的表观遗传调控影响视觉皮层关键期可塑性。

Experience Affects Critical Period Plasticity in the Visual Cortex through an Epigenetic Regulation of Histone Post-Translational Modifications.

作者信息

Baroncelli Laura, Scali Manuela, Sansevero Gabriele, Olimpico Francesco, Manno Ilaria, Costa Mario, Sale Alessandro

机构信息

Neuroscience Institute, National Research Council, I-56124 Pisa, Italy.

Neuroscience Institute, National Research Council, I-56124 Pisa, Italy, NEUROFARBA, University of Florence, Florence, Italy, and.

出版信息

J Neurosci. 2016 Mar 23;36(12):3430-40. doi: 10.1523/JNEUROSCI.1787-15.2016.

Abstract

UNLABELLED

During an early phase of enhanced sensitivity called the critical period (CP), monocular deprivation causes a shift in the response of visual cortex binocular neurons in favor of the nondeprived eye, a process named ocular dominance (OD) plasticity. While the time course of the CP for OD plasticity can be modulated by genetic/pharmacological interventions targeting GABAergic inhibition, whether an increased sensory-motor experience can affect this major plastic phenomenon is not known. We report that exposure to environmental enrichment (EE) accelerated the closure of the CP for OD plasticity in the rat visual cortex. Histone H3 acetylation was developmentally regulated in primary visual cortex, with enhanced levels being detectable early in enriched pups, and chromatin immunoprecipitation revealed an increase at the level of the BDNF P3 promoter. Administration of the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) to animals reared in a standard cage mimicked the increase in H3 acetylation observed in the visual cortex and resulted in an accelerated decay of OD plasticity. Finally, exposure to EE in adulthood upregulated H3 acetylation and was paralleled by a reopening of the CP. These findings demonstrate a critical involvement of the epigenetic machinery as a mediator of visual cortex developmental plasticity and of the impact of EE on OD plasticity.

SIGNIFICANCE STATEMENT

While it is known that an epigenetic remodeling of chromatin structure controls developmental plasticity in the visual cortex, three main questions have remained open. Which is the physiological time course of histone modifications? Is it possible, by manipulating the chromatin epigenetic state, to modulate plasticity levels during the critical period? How can we regulate histone acetylation in the adult brain in a noninvasive manner? We show that the early exposure of rat pups to enriching environmental conditions accelerates the critical period for plasticity in the primary visual cortex, linking this effect to increased histone acetylation, specifically at the BDNF gene level. Moreover, we report that the exposure of adult animals to environmental enrichment enhances histone acetylation and reopens juvenile-like plasticity.

摘要

未标记

在称为关键期(CP)的增强敏感性早期阶段,单眼剥夺会导致视皮层双眼神经元的反应发生偏移,偏向未剥夺的眼睛,这一过程称为眼优势(OD)可塑性。虽然针对GABA能抑制的基因/药物干预可调节OD可塑性的CP时间进程,但增加的感觉运动经验是否会影响这一主要的可塑性现象尚不清楚。我们报告,暴露于环境丰富化(EE)可加速大鼠视皮层中OD可塑性的CP关闭。组蛋白H3乙酰化在初级视皮层中受到发育调控,在丰富环境饲养的幼崽早期可检测到其水平升高,染色质免疫沉淀显示BDNF P3启动子水平增加。向饲养在标准笼中的动物施用组蛋白脱乙酰酶抑制剂SAHA(辛二酰苯胺异羟肟酸)可模拟在视皮层中观察到的H3乙酰化增加,并导致OD可塑性加速衰退。最后,成年期暴露于EE会上调H3乙酰化,并伴随着CP的重新开放。这些发现证明了表观遗传机制作为视皮层发育可塑性的介质以及EE对OD可塑性的影响的关键作用。

意义声明

虽然已知染色质结构的表观遗传重塑控制视皮层的发育可塑性,但仍有三个主要问题未解决。组蛋白修饰的生理时间进程是怎样的?通过操纵染色质表观遗传状态,是否有可能在关键期调节可塑性水平?我们如何以非侵入性方式调节成年大脑中的组蛋白乙酰化?我们表明大鼠幼崽早期暴露于丰富的环境条件可加速初级视皮层可塑性的关键期,将这种效应与组蛋白乙酰化增加联系起来,特别是在BDNF基因水平。此外,我们报告成年动物暴露于环境丰富化可增强组蛋白乙酰化并重新开启类似幼年的可塑性。

相似文献

2
Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats.
Eur J Neurosci. 2011 Jan;33(1):49-57. doi: 10.1111/j.1460-9568.2010.07488.x. Epub 2010 Dec 12.
4
Binocular input coincidence mediates critical period plasticity in the mouse primary visual cortex.
J Neurosci. 2014 Feb 19;34(8):2940-55. doi: 10.1523/JNEUROSCI.2640-13.2014.
6
Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex.
Exp Neurol. 2010 Nov;226(1):100-9. doi: 10.1016/j.expneurol.2010.08.009. Epub 2010 Aug 14.
7
Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex.
Neurobiol Learn Mem. 2012 May;97(4):425-40. doi: 10.1016/j.nlm.2012.03.007. Epub 2012 Mar 24.
9
Transgenerational Transmission of Enhanced Ocular Dominance Plasticity from Enriched Mice to Their Non-enriched Offspring.
eNeuro. 2019 Feb 5;6(1). doi: 10.1523/ENEURO.0252-18.2018. eCollection 2019 Jan-Feb.
10
Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation.
Eur J Neurosci. 2011 Feb;33(3):383-90. doi: 10.1111/j.1460-9568.2010.07508.x. Epub 2010 Dec 31.

引用本文的文献

1
Epigenetic regulation of brain development, plasticity, and response to early-life stress.
Neuropsychopharmacology. 2025 Aug 6. doi: 10.1038/s41386-025-02179-z.
2
Microglia: Mediators of experience-driven corrective neuroplasticity.
IBRO Neurosci Rep. 2025 Jun 5;19:91-100. doi: 10.1016/j.ibneur.2025.05.013. eCollection 2025 Dec.
3
Gene-environmental regulation of the postnatal post-mitotic neuronal maturation.
Trends Genet. 2024 Jun;40(6):480-494. doi: 10.1016/j.tig.2024.03.006. Epub 2024 Apr 23.
4
Histone 4 lysine 5/12 acetylation enables developmental plasticity of Pristionchus mouth form.
Nat Commun. 2023 Apr 13;14(1):2095. doi: 10.1038/s41467-023-37734-z.
5
Critical periods in neural network development: Importance to network tuning and therapeutic potential.
Front Physiol. 2022 Dec 2;13:1073307. doi: 10.3389/fphys.2022.1073307. eCollection 2022.
6
Epigenetic mechanisms regulate cue memory underlying discriminative behavior.
Neurosci Biobehav Rev. 2022 Oct;141:104811. doi: 10.1016/j.neubiorev.2022.104811. Epub 2022 Aug 9.
7
Social Network Plasticity of Mice Parental Behavior.
Front Neurosci. 2022 Jun 7;16:882850. doi: 10.3389/fnins.2022.882850. eCollection 2022.
10
An Extracellular Perspective on CNS Maturation: Perineuronal Nets and the Control of Plasticity.
Int J Mol Sci. 2021 Feb 28;22(5):2434. doi: 10.3390/ijms22052434.

本文引用的文献

2
Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):1150-5. doi: 10.1073/pnas.1313385111. Epub 2014 Jan 6.
3
Environment and brain plasticity: towards an endogenous pharmacotherapy.
Physiol Rev. 2014 Jan;94(1):189-234. doi: 10.1152/physrev.00036.2012.
4
Regulating critical period plasticity: insight from the visual system to fear circuitry for therapeutic interventions.
Front Psychiatry. 2013 Nov 11;4:146. doi: 10.3389/fpsyt.2013.00146. eCollection 2013.
5
Environmental enrichment rescues binocular matching of orientation preference in mice that have a precocious critical period.
Neuron. 2013 Oct 2;80(1):198-209. doi: 10.1016/j.neuron.2013.07.023. Epub 2013 Sep 5.
7
Visual depth perception in normal and deprived rats: effects of environmental enrichment.
Neuroscience. 2013 Apr 16;236:313-9. doi: 10.1016/j.neuroscience.2013.01.036. Epub 2013 Jan 26.
8
IGF-1 restores visual cortex plasticity in adult life by reducing local GABA levels.
Neural Plast. 2012;2012:250421. doi: 10.1155/2012/250421. Epub 2012 Jun 6.
9
Enriched experience and recovery from amblyopia in adult rats: impact of motor, social and sensory components.
Neuropharmacology. 2012 Jun;62(7):2388-97. doi: 10.1016/j.neuropharm.2012.02.010.
10
Environmental enrichment promotes plasticity and visual acuity recovery in adult monocular amblyopic rats.
PLoS One. 2012;7(4):e34815. doi: 10.1371/journal.pone.0034815. Epub 2012 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验