Suppr超能文献

Molecular mechanisms at the basis of plasticity in the developing visual cortex: epigenetic processes and gene programs.

作者信息

Maya-Vetencourt José Fernando, Pizzorusso Tommaso

机构信息

Centre for Nanotechnology Innovation, Piazza San Silvestro 12, 56127 Pisa, Italy. ; Centre for Neuroscience and Cognitive Systems, Corso Bettini 31, 38068 Rovereto, Italian Institute of Technology, Italy.

CNR Neuroscience Institute, Via Moruzzi 1, 56124 Pisa, Italy. ; Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Via San Salvi 12, 50135 Florence, Italy.

出版信息

J Exp Neurosci. 2013 Oct 9;7:75-83. doi: 10.4137/JEN.S12958. eCollection 2013.

Abstract

Neuronal circuitries in the mammalian visual system change as a function of experience. Sensory experience modifies neuronal networks connectivity via the activation of different physiological processes such as excitatory/inhibitory synaptic transmission, neurotrophins, and signaling of extracellular matrix molecules. Long-lasting phenomena of plasticity occur when intracellular signal transduction pathways promote epigenetic alterations of chromatin structure that regulate the induction of transcription factors that in turn drive the expression of downstream targets, the products of which then work via the activation of structural and functional mechanisms that modify synaptic connectivity. Here, we review recent findings in the field of visual cortical plasticity while focusing on how physiological mechanisms associated with experience promote structural changes that determine functional modifications of neural circuitries in V1. We revise the role of microRNAs as molecular transducers of environmental stimuli and the role of immediate early genes that control gene expression programs underlying plasticity in the developing visual cortex.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2bb/4089832/b94d5205048c/jen-7-2013-075f1.jpg

相似文献

3
Experience-dependent transcriptional regulation in juvenile brain development.
Dev Growth Differ. 2018 Oct;60(8):473-482. doi: 10.1111/dgd.12571.
4
Synaptic mechanisms for plasticity in neocortex.
Annu Rev Neurosci. 2009;32:33-55. doi: 10.1146/annurev.neuro.051508.135516.
5
Molecular basis of plasticity in the visual cortex.
Trends Neurosci. 2003 Jul;26(7):369-78. doi: 10.1016/S0166-2236(03)00168-1.
6
Human brain plasticity: evidence from sensory deprivation and altered language experience.
Prog Brain Res. 2002;138:177-88. doi: 10.1016/S0079-6123(02)38078-6.
8
Shaping inhibition: activity dependent structural plasticity of GABAergic synapses.
Front Cell Neurosci. 2014 Oct 27;8:327. doi: 10.3389/fncel.2014.00327. eCollection 2014.
9
Inhibitory plasticity dictates the sign of plasticity at excitatory synapses.
J Neurosci. 2014 Jan 22;34(4):1083-93. doi: 10.1523/JNEUROSCI.4711-13.2014.

引用本文的文献

1
Non-invasive light flickering reinstates visual plasticity in adult mice via lipocalin 2.
BMC Biol. 2025 Aug 4;23(1):237. doi: 10.1186/s12915-025-02360-2.
2
Multisensory integration, brain plasticity and optogenetics in visual rehabilitation.
Front Neurol. 2025 Jul 10;16:1590305. doi: 10.3389/fneur.2025.1590305. eCollection 2025.
3
Restoring vision in adult amblyopia by enhancing plasticity through deletion of the transcriptional repressor REST.
iScience. 2024 Mar 14;27(4):109507. doi: 10.1016/j.isci.2024.109507. eCollection 2024 Apr 19.
4
The p-ERG spatial acuity in the biomedical pig under physiological conditions.
Sci Rep. 2022 Sep 14;12(1):15479. doi: 10.1038/s41598-022-19925-8.
5
Multisensory Integration: Is Medial Prefrontal Cortex Signaling Relevant for the Treatment of Higher-Order Visual Dysfunctions?
Front Mol Neurosci. 2022 Jan 17;14:806376. doi: 10.3389/fnmol.2021.806376. eCollection 2021.
7
Input-specific maturation of NMDAR-mediated transmission onto parvalbumin-expressing interneurons in layers 2/3 of the visual cortex.
J Neurophysiol. 2018 Dec 1;120(6):3063-3076. doi: 10.1152/jn.00495.2018. Epub 2018 Oct 10.
10
Role of MicroRNA in Governing Synaptic Plasticity.
Neural Plast. 2016;2016:4959523. doi: 10.1155/2016/4959523. Epub 2016 Mar 13.

本文引用的文献

2
Obligatory role for the immediate early gene NARP in critical period plasticity.
Neuron. 2013 Jul 24;79(2):335-46. doi: 10.1016/j.neuron.2013.05.016.
3
Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity.
Cell Rep. 2013 Jun 27;3(6):1815-23. doi: 10.1016/j.celrep.2013.05.014. Epub 2013 Jun 13.
4
Development and specification of GABAergic cortical interneurons.
Cell Biosci. 2013 Apr 23;3(1):19. doi: 10.1186/2045-3701-3-19.
6
Visual cortex plasticity: a complex interplay of genetic and environmental influences.
Neural Plast. 2012;2012:631965. doi: 10.1155/2012/631965. Epub 2012 Jul 18.
7
Development and plasticity of the primary visual cortex.
Neuron. 2012 Jul 26;75(2):230-49. doi: 10.1016/j.neuron.2012.06.009.
8
Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex.
J Neurosci. 2012 Jul 4;32(27):9429-37. doi: 10.1523/JNEUROSCI.0394-12.2012.
9
Experience-dependent expression of NPAS4 regulates plasticity in adult visual cortex.
J Physiol. 2012 Oct 1;590(19):4777-87. doi: 10.1113/jphysiol.2012.234237. Epub 2012 Jun 6.
10
Development and critical period plasticity of the barrel cortex.
Eur J Neurosci. 2012 May;35(10):1540-53. doi: 10.1111/j.1460-9568.2012.08075.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验