Suppr超能文献

未受累免疫球蛋白水平可预测多发性骨髓瘤患者的临床状态和无进展生存期。

Levels of uninvolved immunoglobulins predict clinical status and progression-free survival for multiple myeloma patients.

机构信息

Institute for Myeloma & Bone Cancer Research, West Hollywood, CA, USA.

Oncotherapeutics, West Hollywood, CA, USA.

出版信息

Br J Haematol. 2016 Jul;174(1):81-7. doi: 10.1111/bjh.14026. Epub 2016 Mar 27.

Abstract

Multiple myeloma (MM) is characterized by the enhanced production of the same monoclonal immunoglobulin (M-Ig or M protein). Techniques such as serum protein electrophoresis and nephelometry are routinely used to quantify levels of this protein in the serum of MM patients. However, these methods are not without their shortcomings and problems accurately quantifying M proteins remain. Precise quantification of the types and levels of M-Ig present is critical to monitoring patient response to therapy. In this study, we investigated the ability of the HevyLite (HLC) immunoassay to correlate with clinical status based on levels of involved and uninvolved antibodies. In our cohort of MM patients, we observed that significantly higher ratios and greater differences of involved HLC levels compared to uninvolved HLC levels correlated with a worse clinical status. Similarly, higher absolute levels of involved HLC antibodies and lower levels of uninvolved HLC antibodies also correlated with a worse clinical status and a shorter progression-free survival. These findings suggest that the HLC assay is a useful and a promising tool for determining the clinical status and survival time for patients with multiple myeloma.

摘要

多发性骨髓瘤(MM)的特征是同种单克隆免疫球蛋白(M-Ig 或 M 蛋白)的过度产生。血清蛋白电泳和散射比浊法等技术常用于定量 MM 患者血清中这种蛋白的水平。然而,这些方法并非没有缺点,仍然存在准确量化 M 蛋白的问题。精确量化存在的 M-Ig 类型和水平对于监测患者对治疗的反应至关重要。在这项研究中,我们研究了基于受累和未受累抗体水平,HevyLite(HLC)免疫测定与临床状态的相关性。在我们的 MM 患者队列中,我们观察到与未受累 HLC 水平相比,受累 HLC 水平的比值显著更高且差异更大,与更差的临床状态相关。同样,受累 HLC 抗体的绝对水平较高,未受累 HLC 抗体的水平较低,也与更差的临床状态和较短的无进展生存期相关。这些发现表明,HLC 测定是一种有用且有前途的工具,可用于确定多发性骨髓瘤患者的临床状态和生存时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验