Jungmann Ralf, Avendaño Maier S, Dai Mingjie, Woehrstein Johannes B, Agasti Sarit S, Feiger Zachary, Rodal Avital, Yin Peng
Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA.
Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.
Nat Methods. 2016 May;13(5):439-42. doi: 10.1038/nmeth.3804. Epub 2016 Mar 28.
Counting molecules in complexes is challenging, even with super-resolution microscopy. Here, we use the programmable and specific binding of dye-labeled DNA probes to count integer numbers of targets. This method, called quantitative points accumulation in nanoscale topography (qPAINT), works independently of dye photophysics for robust counting with high precision and accuracy over a wide dynamic range. qPAINT was benchmarked on DNA nanostructures and demonstrated for cellular applications by quantifying proteins in situ and the number of single-molecule FISH probes bound to an mRNA target.
即使使用超分辨率显微镜,对复合物中的分子进行计数也具有挑战性。在这里,我们利用染料标记的DNA探针的可编程和特异性结合来对目标的整数数量进行计数。这种方法称为纳米级形貌中的定量点积累(qPAINT),它独立于染料光物理过程,能够在很宽的动态范围内以高精度和准确性进行可靠计数。qPAINT已在DNA纳米结构上进行了基准测试,并通过原位定量蛋白质以及与mRNA靶标结合的单分子FISH探针的数量,证明了其在细胞应用中的可行性。