Suppr超能文献

单蛋白分辨率下生物分子寡聚化的空间和化学计量原位分析。

Spatial and stoichiometric in situ analysis of biomolecular oligomerization at single-protein resolution.

作者信息

Masullo Luciano A, Kowalewski Rafal, Honsa Monique, Heinze Larissa, Xu Shuhan, Steen Philipp R, Grabmayr Heinrich, Pachmayr Isabelle, Reinhardt Susanne C M, Perovic Ana, Kwon Jisoo, Oxley Ethan P, Dickins Ross A, Bastings Maartje M C, Parish Ian A, Jungmann Ralf

机构信息

Max Planck Institute of Biochemistry, Planegg, Germany.

Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.

出版信息

Nat Commun. 2025 May 6;16(1):4202. doi: 10.1038/s41467-025-59500-z.

Abstract

Latest advances in super-resolution microscopy allow the study of subcellular features at the level of single proteins, which could lead to discoveries in fundamental biological processes, specifically in cell signaling mediated by membrane receptors. Despite these advances, accurately extracting quantitative information on molecular arrangements of proteins at the 1-20 nm scale through rigorous image analysis remains a significant challenge. Here, we present SPINNA (Single-Protein Investigation via Nearest-Neighbor Analysis): an analysis framework that compares nearest-neighbor distances from experimental single-protein position data with those obtained from realistic simulations based on a user-defined model of protein oligomerization states. We demonstrate SPINNA in silico, in vitro, and in cells. In particular, we quantitatively assess the oligomerization of the epidermal growth factor receptor (EGFR) upon EGF treatment and investigate the dimerization of CD80 and PD-L1, key surface ligands involved in immune cell signaling. Importantly, we offer an open-source Python implementation and a GUI to facilitate SPINNA's widespread use in the scientific community.

摘要

超分辨率显微镜的最新进展使得在单蛋白水平研究亚细胞特征成为可能,这可能会在基础生物学过程中带来新发现,特别是在由膜受体介导的细胞信号传导方面。尽管有这些进展,但通过严格的图像分析在1-20纳米尺度上准确提取关于蛋白质分子排列的定量信息仍然是一项重大挑战。在此,我们介绍了SPINNA(通过最近邻分析进行单蛋白研究):一个分析框架,该框架将实验单蛋白位置数据中的最近邻距离与基于用户定义的蛋白质寡聚化状态模型从真实模拟中获得的距离进行比较。我们在计算机模拟、体外实验和细胞实验中展示了SPINNA。特别是,我们定量评估了表皮生长因子受体(EGFR)在表皮生长因子(EGF)处理后的寡聚化,并研究了参与免疫细胞信号传导的关键表面配体CD80和程序性死亡受体配体1(PD-L1)的二聚化。重要的是,我们提供了一个开源的Python实现和一个图形用户界面(GUI),以促进SPINNA在科学界的广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c52/12056017/03937748b175/41467_2025_59500_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验