Zawada Adam M, Schneider Jenny S, Michel Anne I, Rogacev Kyrill S, Hummel Björn, Krezdorn Nicolas, Müller Soeren, Rotter Björn, Winter Peter, Obeid Rima, Geisel Jürgen, Fliser Danilo, Heine Gunnar H
a Department of Internal Medicine IV , Saarland University Medical Center , Homburg , Germany.
b University Heart Center Luebeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Hospital Schleswig-Holstein , Luebeck , Germany.
Epigenetics. 2016 Apr 2;11(4):259-72. doi: 10.1080/15592294.2016.1158363. Epub 2016 Mar 28.
Human monocytes are a heterogeneous cell population consisting of 3 subsets: classical CD14++CD16-, intermediate CD14++CD16+ and nonclassical CD14+CD16++ monocytes. Via poorly characterized mechanisms, intermediate monocyte counts rise in chronic inflammatory diseases, among which chronic kidney disease is of particular epidemiologic importance. DNA methylation is a central epigenetic feature that controls hematopoiesis. By applying next-generation Methyl-Sequencing we now tested how far the 3 monocyte subsets differ in their DNA methylome and whether uremia induces DNA methylation changes in differentiating monocytes. We found that each monocyte subset displays a unique phenotype with regards to DNA methylation. Genes with differentially methylated promoter regions in intermediate monocytes were linked to distinct immunological processes, which is in line with results from recent gene expression analyses. In vitro, uremia induced dysregulation of DNA methylation in differentiating monocytes, which affected several transcription regulators important for monocyte differentiation (e.g., FLT3, HDAC1, MNT) and led to enhanced generation of intermediate monocytes. As potential mediator, the uremic toxin and methylation inhibitor S-adenosylhomocysteine induced shifts in monocyte subsets in vitro, and associated with monocyte subset counts in vivo. Our data support the concept of monocyte trichotomy and the distinct role of intermediate monocytes in human immunity. The shift in monocyte subsets that occurs in chronic kidney disease, a proinflammatory condition of substantial epidemiological impact, may be induced by accumulation of uremic toxins that mediate epigenetic dysregulation.
人类单核细胞是一个异质性细胞群体,由3个亚群组成:经典的CD14++CD16-单核细胞、中间型CD14++CD16+单核细胞和非经典的CD14+CD16++单核细胞。通过特征尚不明确的机制,中间型单核细胞计数在慢性炎症性疾病中升高,其中慢性肾脏病具有特别重要的流行病学意义。DNA甲基化是控制造血作用的核心表观遗传特征。通过应用新一代甲基测序技术,我们现在测试了这3个单核细胞亚群在DNA甲基化组方面的差异程度,以及尿毒症是否会在单核细胞分化过程中诱导DNA甲基化变化。我们发现,每个单核细胞亚群在DNA甲基化方面都表现出独特的表型。中间型单核细胞中启动子区域甲基化存在差异的基因与不同的免疫过程相关,这与最近的基因表达分析结果一致。在体外,尿毒症会诱导分化中的单核细胞出现DNA甲基化失调,这影响了几个对单核细胞分化很重要的转录调节因子(例如FLT3、HDAC1、MNT),并导致中间型单核细胞生成增加。作为潜在的介质,尿毒症毒素和甲基化抑制剂S-腺苷同型半胱氨酸在体外诱导了单核细胞亚群的变化,并与体内单核细胞亚群计数相关。我们的数据支持单核细胞三分法的概念以及中间型单核细胞在人类免疫中的独特作用。在具有重大流行病学影响的促炎疾病慢性肾脏病中发生的单核细胞亚群变化,可能是由介导表观遗传失调的尿毒症毒素积累所诱导的。