Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Nat Mater. 2016 Jul;15(7):711-6. doi: 10.1038/nmat4603. Epub 2016 Mar 28.
Exploiting 2D materials for spintronic applications can potentially realize next-generation devices featuring low power consumption and quantum operation capability. The magnetic exchange field (MEF) induced by an adjacent magnetic insulator enables efficient control of local spin generation and spin modulation in 2D devices without compromising the delicate material structures. Using graphene as a prototypical 2D system, we demonstrate that its coupling to the model magnetic insulator (EuS) produces a substantial MEF (>14 T) with the potential to reach hundreds of tesla, which leads to orders-of-magnitude enhancement of the spin signal originating from the Zeeman spin Hall effect. Furthermore, the new ferromagnetic ground state of Dirac electrons resulting from the strong MEF may give rise to quantized spin-polarized edge transport. The MEF effect shown in our graphene/EuS devices therefore provides a key functionality for future spin logic and memory devices based on emerging 2D materials in classical and quantum information processing.
利用二维材料进行自旋电子学应用,有可能实现新一代具有低功耗和量子操作能力的设备。通过相邻的磁性绝缘体产生的磁交换场(MEF),可以在不影响精细材料结构的情况下,有效地控制二维器件中的局部自旋产生和自旋调制。我们使用石墨烯作为典型的二维系统,证明了其与模型磁性绝缘体(EuS)的耦合产生了一个相当大的 MEF(>14 T),具有达到数百特斯拉的潜力,这导致了源于塞曼自旋霍尔效应的自旋信号的数量级增强。此外,由于强 MEF 产生的狄拉克电子的新铁磁基态可能导致量子化的自旋极化边缘输运。因此,我们在石墨烯/EuS 器件中观察到的 MEF 效应,为基于新兴二维材料的经典和量子信息处理中的未来自旋逻辑和存储器件提供了关键功能。