IEEE Trans Pattern Anal Mach Intell. 2017 Feb;39(2):209-226. doi: 10.1109/TPAMI.2016.2545669. Epub 2016 Mar 23.
This paper studies an approach to gait based human identification via similarity learning by deep convolutional neural networks (CNNs). With a pretty small group of labeled multi-view human walking videos, we can train deep networks to recognize the most discriminative changes of gait patterns which suggest the change of human identity. To the best of our knowledge, this is the first work based on deep CNNs for gait recognition in the literature. Here, we provide an extensive empirical evaluation in terms of various scenarios, namely, cross-view and cross-walking-condition, with different preprocessing approaches and network architectures. The method is first evaluated on the challenging CASIA-B dataset in terms of cross-view gait recognition. Experimental results show that it outperforms the previous state-of-the-art methods by a significant margin. In particular, our method shows advantages when the cross-view angle is large, i.e., no less than 36 degree. And the average recognition rate can reach 94 percent, much better than the previous best result (less than 65 percent). The method is further evaluated on the OU-ISIR gait dataset to test its generalization ability to larger data. OU-ISIR is currently the largest dataset available in the literature for gait recognition, with 4,007 subjects. On this dataset, the average accuracy of our method under identical view conditions is above 98 percent, and the one for cross-view scenarios is above 91 percent. Finally, the method also performs the best on the USF gait dataset, whose gait sequences are imaged in a real outdoor scene. These results show great potential of this method for practical applications.
本文研究了一种基于深度卷积神经网络 (CNN) 的相似性学习的步态识别方法。通过使用相当少量的标记多视角人体行走视频,我们可以训练深度网络来识别最具区分力的步态模式变化,这些变化提示了人类身份的变化。据我们所知,这是文献中首次基于深度 CNN 进行步态识别的工作。在这里,我们在各种场景下,即跨视角和跨行走条件下,通过不同的预处理方法和网络架构,进行了广泛的实证评估。该方法首先在具有挑战性的 CASIA-B 数据集上进行了跨视角步态识别评估。实验结果表明,它明显优于以前的最先进方法。特别是,当跨视角角度较大(即不小于 36 度)时,我们的方法具有优势。平均识别率可达 94%,明显优于以前的最佳结果(低于 65%)。该方法还在 OU-ISIR 步态数据集上进行了评估,以测试其对更大数据的泛化能力。OU-ISIR 是目前文献中可用于步态识别的最大数据集,包含 4007 个主体。在这个数据集上,我们的方法在相同视角条件下的平均准确率高于 98%,在跨视角场景下的准确率高于 91%。最后,该方法在 USF 步态数据集上的表现也最好,该数据集的步态序列是在真实的户外场景中拍摄的。这些结果表明,该方法在实际应用中具有很大的潜力。