文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于伴有严重骨膜剥离损伤的节段性长骨开放性骨折的生物人工聚([D,L]-丙交酯-共-乙交酯)药物洗脱纳米纤维骨膜。

A bio-artificial poly([D,L]-lactide-co-glycolide) drug-eluting nanofibrous periosteum for segmental long bone open fractures with significant periosteal stripping injuries.

作者信息

Chou Ying-Chao, Cheng Yi-Shiun, Hsu Yung-Heng, Yu Yi-Hsun, Liu Shih-Jung

机构信息

Biomaterials Lab, Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.

Biomaterials Lab, Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.

出版信息

Int J Nanomedicine. 2016 Mar 8;11:941-53. doi: 10.2147/IJN.S99791. eCollection 2016.


DOI:10.2147/IJN.S99791
PMID:27022261
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4792178/
Abstract

Biodegradable poly([D,L]-lactide-co-glycolide) (PLGA) nanofibrous membrane embedded with two drug-to-polymer weight ratios, namely 1:3 and 1:6, which comprised PLGA 180 mg, lidocaine 20 mg, vancomycin 20 mg, and ceftazidime 20 mg, and PLGA 360 mg, lidocaine 20 mg, vancomycin 20 mg, and ceftazidime 20 mg, respectively, was produced as an artificial periosteum in the treatment of segmental femoral fractures. The nanofibrous membrane's drug release behavior was assessed in vitro using high-performance liquid chromatography and the disk-diffusion method. A femoral segmental fracture model with intramedullary Kirschner-wire fixation was established for the in vivo rabbit activity study. Twenty-four rabbits were divided into two groups. Twelve rabbits in group A underwent femoral fracture fixation only, and 12 rabbits in group B underwent femoral fracture fixation and were administered the drug-loaded nanofibers. Radiographs obtained at 2, 6, and 12 weeks postoperatively were used to assess the bone unions. The total activity counts in animal behavior cages were also examined to evaluate the clinical performance of the rabbits. After the animals were euthanized, both femoral shafts were harvested and assessed for their torque strengths and toughness. The daily in vitro release curve for lidocaine showed that the nanofibers eluted effective levels of lidocaine for longer than 3 weeks. The bioactivity studies of vancomycin and ceftazidime showed that both antibiotics had effective and sustained bactericidal capacities for over 30 days. The findings from the in vivo animal activity study suggested that the rabbits with the artificial drug-eluting periosteum exhibited statistically increased levels of activity and better clinical performance outcomes compared with the rabbits without the artificial periosteum. In conclusion, this artificial drug-eluting periosteum may eventually be used for the treatment of open fractures.

摘要

生物可降解聚([D,L]-丙交酯-共-乙交酯)(PLGA)纳米纤维膜,其嵌入了两种药物与聚合物的重量比,即1:3和1:6,分别由180毫克PLGA、20毫克利多卡因、20毫克万古霉素和20毫克头孢他啶,以及360毫克PLGA、20毫克利多卡因、20毫克万古霉素和20毫克头孢他啶组成,被制作成人工骨膜用于治疗股骨节段性骨折。使用高效液相色谱法和纸片扩散法在体外评估纳米纤维膜的药物释放行为。建立了髓内克氏针固定的股骨节段性骨折模型用于兔体内活性研究。24只兔子被分为两组。A组的12只兔子仅接受股骨骨折固定,B组的12只兔子接受股骨骨折固定并给予载药纳米纤维。术后2周、6周和12周获得的X线片用于评估骨愈合情况。还检查了动物行为笼中的总活动计数以评估兔子的临床性能。动物安乐死后,取出双侧股骨干并评估其扭矩强度和韧性。利多卡因的每日体外释放曲线表明,纳米纤维洗脱有效水平的利多卡因超过3周。万古霉素和头孢他啶的生物活性研究表明,两种抗生素在30多天内均具有有效且持续的杀菌能力。体内动物活性研究的结果表明,与没有人工骨膜的兔子相比,具有人工药物洗脱骨膜的兔子在统计学上表现出更高的活动水平和更好的临床性能结果。总之,这种人工药物洗脱骨膜最终可能用于治疗开放性骨折。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/d11535e3e6a8/ijn-11-941Fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/b04ecc1b5a54/ijn-11-941Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/6deca875294e/ijn-11-941Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/de38480ca901/ijn-11-941Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/be1f07ca3979/ijn-11-941Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/0040f63b6ad1/ijn-11-941Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/336d40a41ed6/ijn-11-941Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/86693442048f/ijn-11-941Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/895006552e1d/ijn-11-941Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/5f587b0f7d57/ijn-11-941Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/4ad64edea29b/ijn-11-941Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/8010ab2b66d2/ijn-11-941Fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/87608569a016/ijn-11-941Fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/d11535e3e6a8/ijn-11-941Fig13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/b04ecc1b5a54/ijn-11-941Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/6deca875294e/ijn-11-941Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/de38480ca901/ijn-11-941Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/be1f07ca3979/ijn-11-941Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/0040f63b6ad1/ijn-11-941Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/336d40a41ed6/ijn-11-941Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/86693442048f/ijn-11-941Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/895006552e1d/ijn-11-941Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/5f587b0f7d57/ijn-11-941Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/4ad64edea29b/ijn-11-941Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/8010ab2b66d2/ijn-11-941Fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/87608569a016/ijn-11-941Fig12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4471/4792178/d11535e3e6a8/ijn-11-941Fig13.jpg

相似文献

[1]
A bio-artificial poly([D,L]-lactide-co-glycolide) drug-eluting nanofibrous periosteum for segmental long bone open fractures with significant periosteal stripping injuries.

Int J Nanomedicine. 2016-3-8

[2]
Biodegradable nanofiber-membrane for sustainable release of lidocaine at the femoral fracture site as a periosteal block: In vitro and in vivo studies in a rabbit model.

Colloids Surf B Biointerfaces. 2016-4-1

[3]
A biodegradable antibiotic-eluting PLGA nanofiber-loaded deproteinized bone for treatment of infected rabbit bone defects.

J Biomater Appl. 2016-8

[4]
Combination of a biodegradable three-dimensional (3D) - printed cage for mechanical support and nanofibrous membranes for sustainable release of antimicrobial agents for treating the femoral metaphyseal comminuted fracture.

J Mech Behav Biomed Mater. 2017-8

[5]
Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes.

Int J Pharm. 2012-4-12

[6]
Sustained relief of pain from osteosynthesis surgery of rib fracture by using biodegradable lidocaine-eluting nanofibrous membranes.

Nanomedicine. 2016-10

[7]
Biodegradable drug-eluting nanofiber-enveloped implants for sustained release of high bactericidal concentrations of vancomycin and ceftazidime: in vitro and in vivo studies.

Int J Nanomedicine. 2014-9-12

[8]
Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers.

Int J Nanomedicine. 2016-8-17

[9]
Sustained local delivery of high-concentration vancomycin from a hybrid biodegradable, antibiotic-eluting, nanofiber-loaded endovascular prosthesis for treatment of mycotic aortic aneurysms.

J Vasc Surg. 2017-10-21

[10]
Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repair of infected wounds: an in vitro and in vivo study.

Int J Nanomedicine. 2012-2-13

引用本文的文献

[1]
Advanced therapeutic scaffolds of biomimetic periosteum for functional bone regeneration.

J Nanobiotechnology. 2025-7-26

[2]
Structurally and Functionally Adaptive Biomimetic Periosteum: Materials, Fabrication, and Construction Strategies.

Exploration (Beijing). 2025-2-27

[3]
Biomimicking design of artificial periosteum for promoting bone healing.

J Orthop Translat. 2022-7-11

[4]
Sustained Delivery of Analgesic and Antimicrobial Agents to Knee Joint by Direct Injections of Electrosprayed Multipharmaceutical-Loaded Nano/Microparticles.

Polymers (Basel). 2018-8-9

[5]
Nanoporosity improved water absorption, in vitro degradability, mineralization, osteoblast responses and drug release of poly(butylene succinate)-based composite scaffolds containing nanoporous magnesium silicate compared with magnesium silicate.

Int J Nanomedicine. 2017-5-11

本文引用的文献

[1]
Effect of extracorporeal shock wave therapy on fracture healing in rat femural fractures with intact and excised periosteum.

Eklem Hastalik Cerrahisi. 2014

[2]
Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.

J Biomater Sci Polym Ed. 2014

[3]
Biodegradable drug-eluting nanofiber-enveloped implants for sustained release of high bactericidal concentrations of vancomycin and ceftazidime: in vitro and in vivo studies.

Int J Nanomedicine. 2014-9-12

[4]
Differences in the developmental origins of the periosteum may influence bone healing.

J Periodontal Res. 2015-8

[5]
Cultured human periosteal-derived cells have inducible adipogenic activity and can also differentiate into osteoblasts in a perioxisome proliferator-activated receptor-mediated fashion.

Int J Med Sci. 2014-8-16

[6]
Expansion of murine periosteal progenitor cells with fibroblast growth factor 2 reveals an intrinsic endochondral ossification program mediated by bone morphogenetic protein 2.

Stem Cells. 2014-9

[7]
The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis: a series of 195 cases.

Bone Joint J. 2014-6

[8]
Open extremity fractures: impact of delay in operative debridement and irrigation.

J Trauma Acute Care Surg. 2014-5

[9]
Periosteum-mimetic structures made from freestanding microgrooved nanosheets.

Adv Mater. 2014-3-11

[10]
Endothelialization of electrospun polycaprolactone (PCL) small caliber vascular grafts spun from different polymer blends.

J Biomed Mater Res A. 2014-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索