Jozefkowicz Cintia, Sigaut Lorena, Scochera Florencia, Soto Gabriela, Ayub Nicolás, Pietrasanta Lía Isabel, Amodeo Gabriela, González Flecha F Luis, Alleva Karina
Instituto de Química y Fisicoquímica Biológica Alejandro C. Paladini (IQUIFIB), Universidad de Buenos Aires, Consejo National de Investigaciones Científicas y Técnicas (UBA-CONICET), Buenos Aires, Argentina.
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Física de Buenos Aires (IFIBA), CONICET, Ciudad Universitaria, Buenos Aires, Argentina.
Biophys J. 2016 Mar 29;110(6):1312-21. doi: 10.1016/j.bpj.2016.01.026.
Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane.
许多质膜通道形成寡聚体组装体,异源寡聚化已被描述为一些蛋白质家族的一个显著特征。在植物质膜水通道蛋白(PIPs)的特定情况下,PIP1和PIP2单体相互作用形成异源四聚体。然而,由PIP1和PIP2亚基形成的不同异源四聚体构型的生物学特性尚未得到研究。在非洲爪蟾卵母细胞中共表达串联PIP2 - PIP1二聚体时,据我们所知,我们首次能够研究具有2:2化学计量比的单个异源四聚体物种的功能特性。我们还将PIP2 - PIP1二聚体与PIP1和PIP2单体共表达,以实验研究每个四聚体组装体的定位和生物学活性。我们的结果表明,PIP2 - PIP1异源四聚体可以以3:1、1:3或2:2的化学计量比组装,这取决于细胞中PIP1和PIP2的相对表达量。所有PIP2 - PIP1异源四聚体物种都定位在质膜上,并具有相同的水运输能力。此外,任何异源四聚体组装体对通过质膜的总水运输的贡献是PIP2同型四聚体贡献的两倍。我们的结果还表明,质膜水运输可以通过不同四聚体物种的共存和细胞内pH来调节。此外,所有四聚体物种在质子传感方面表现出相似的协同行为。这些发现揭示了PIP四聚体的功能特性,表明它们具有依赖于可用PIP1和PIP2分子数量的灵活化学计量比。据我们所知,这代表了一种调节跨质膜水运输的新机制。