Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Protein Sci. 2024 Dec;33(12):e5204. doi: 10.1002/pro.5204.
Aquaporins (AQPs) are membrane proteins specialized in facilitating water transport across membranes. Mechanical stress is one of the various stimuli that regulate AQPs. Briefly, there are several studies that report a decrease in permeability upon an increase in membrane tension. However, the molecular details of this mechanosensitive (MS) response are still a matter of debate. Our work attempts to close that gap in knowledge by providing evidence of a conformational change that occurs inside the pore of the strawberry aquaporin FaPIP2;1. Via osmotic shock experiments and molecular dynamics (MD) simulations, we found that a residue of loop B, I106, is key to the blocking of the permeation pathway and such a change is almost exclusively found under membrane tensile stress. In detail, osmotic shock experiments exhibited a nonlinear increment in water fluxes for increasing osmolarities, evidencing a decrease in the FaPIP2;1 permeability. MD simulations under membrane tension showed the same trend, with a significant increase in states with a low water permeability. The latter was correlated with a conformational change in I106 that generates a permeation barrier of around 18 kJ mol, effectively closing the pore. This work constitutes the first report of a PIP type aquaporin reacting to tensile stress in the membrane. Our findings could pave the way to test whether this conformational change is also responsible for mechanical gating in the other MS aquaporins, both those already reported and those still waiting to be found.
水通道蛋白(AQP)是一种专门促进跨膜水运输的膜蛋白。机械应激是调节 AQP 的多种刺激之一。简要地说,有几项研究报告称,随着膜张力的增加,通透性会降低。然而,这种机械敏感(MS)响应的分子细节仍然存在争议。我们的工作试图通过提供草莓水通道蛋白 FaPIP2;1 孔内发生构象变化的证据来填补这一知识空白。通过渗透压冲击实验和分子动力学(MD)模拟,我们发现 B 环的一个残基 I106 是阻断渗透途径的关键,这种变化几乎只发生在膜拉伸应力下。具体来说,渗透压冲击实验表明,随着渗透压的增加,水通量呈非线性增加,这表明 FaPIP2;1 的通透性降低。在膜张力下进行的 MD 模拟也显示出相同的趋势,具有低水通透性的状态显著增加。后者与 I106 的构象变化相关,该变化产生了约 18kJ/mol 的渗透屏障,有效地关闭了孔。这是首次报道 PIP 型水通道蛋白对膜张力做出反应。我们的发现为测试这种构象变化是否也负责其他 MS 水通道蛋白的机械门控铺平了道路,无论是已经报道的还是仍在等待发现的。