Kalm Marie, Andreasson Ulf, Björk-Eriksson Thomas, Zetterberg Henrik, Pekny Milos, Blennow Kaj, Pekna Marcela, Blomgren Klas
Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden.
Oncotarget. 2016 Apr 12;7(15):19382-94. doi: 10.18632/oncotarget.8400.
Radiotherapy in the treatment of pediatric brain tumors is often associated with debilitating late-appearing adverse effects, such as intellectual impairment. Areas in the brain harboring stem cells are particularly sensitive to irradiation (IR) and loss of these cells may contribute to cognitive deficits. It has been demonstrated that IR-induced inflammation negatively affects neural progenitor differentiation. In this study, we used mice lacking the third complement component (C3-/-) to investigate the role of complement in a mouse model of IR-induced injury to the granule cell layer (GCL) of the hippocampus. C3-/- and wild type (WT) mice received a single, moderate dose of 8 Gy to the brain on postnatal day 10. The C3-/- mice displayed 55 % more microglia (Iba-1+) and a trend towards increase in proliferating cells in the GCL compared to WT mice 7 days after IR. Importantly, months after IR C3-/- mice made fewer errors than WT mice in a reversal learning test indicating better learning capacity in C3-/- mice after IR. Notably, months after IR C3-/- and WT mice had similar GCL volumes, survival of newborn cells (BrdU), microglia (Iba-1) and astrocyte (S100β) numbers in the GCL. In summary, our data show that the complement system contributes to IR-induced loss of proliferating cells and maladaptive inflammatory responses in the acute phase after IR, leading to impaired learning capacity in adulthood. Targeting the complement system is hence promising for future strategies to reduce the long-term adverse consequences of IR in the young brain.
放射疗法用于治疗小儿脑肿瘤时,常常伴随着诸如智力损伤等令人衰弱的迟发性不良反应。大脑中含有干细胞的区域对辐射(IR)特别敏感,这些细胞的丧失可能导致认知缺陷。已经证明,IR诱导的炎症会对神经祖细胞分化产生负面影响。在本研究中,我们使用缺乏第三补体成分(C3-/-)的小鼠,来研究补体在IR诱导的海马颗粒细胞层(GCL)损伤小鼠模型中的作用。C3-/-和野生型(WT)小鼠在出生后第10天接受单次8 Gy的中等剂量脑部照射。与IR后7天的WT小鼠相比,C3-/-小鼠的小胶质细胞(Iba-1+)多55%,并且GCL中增殖细胞有增加的趋势。重要的是,在IR数月后,C3-/-小鼠在逆向学习测试中比WT小鼠犯的错误更少,表明IR后C3-/-小鼠的学习能力更好。值得注意的是,IR数月后,C3-/-和WT小鼠的GCL体积、新生细胞(BrdU)存活率、小胶质细胞(Iba-1)和星形胶质细胞(S100β)数量在GCL中相似。总之,我们的数据表明,补体系统在IR急性期导致IR诱导的增殖细胞丧失和适应性炎症反应,导致成年期学习能力受损。因此,针对补体系统有望成为未来减少IR对幼脑长期不良后果的策略。