用于工程化磁性组织的生物相容性磁核壳纳米复合材料。

Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues.

作者信息

Rodriguez-Arco Laura, Rodriguez Ismael A, Carriel Victor, Bonhome-Espinosa Ana B, Campos Fernando, Kuzhir Pavel, Duran Juan D G, Lopez-Lopez Modesto T

机构信息

Department of Applied Physics, University of Granada, Faculty of Science, Campus de Fuentenueva, 18071 Granada, Spain.

Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain and Department of Histology (Tissue Engineering Group), University of Granada, Faculty of Medicine, Avenida de la Investigación, 11, 18016 Granada, Spain.

出版信息

Nanoscale. 2016 Apr 21;8(15):8138-50. doi: 10.1039/c6nr00224b.

Abstract

The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.

摘要

将磁性纳米颗粒纳入生物聚合物基质能够制备出对磁场有响应的工程组织。在此,我们描述了一种合成路线,用于制备由聚合物核和磁性壳组成的生物相容性核壳纳米结构,其正是为此目的而使用。我们表明,采用核壳结构具有双重优势。首先,由于与轻质聚合物核相连的复合材料平均密度降低,核壳纳米复合材料的重力沉降较慢。其次,核壳纳米复合材料的磁响应可以通过改变磁性层的厚度来调节。将这些复合材料掺入含有细胞的生物聚合物水凝胶中,可形成对磁场有响应的工程组织,其机械性能可由外部磁力控制。事实上,当暴露于外部磁场时,我们观察到工程组织的粘弹性模量显著增加。由于复合材料用聚乙二醇进行了功能化处理,所制备的类似生物人工组织的构建体还表现出优异的体外细胞活力和增殖能力。当植入体内时,工程组织显示出良好的生物相容性以及与宿主组织的出色相互作用。实际上,它们仅在植入部位引起局部短暂的炎症反应,而对其他器官没有任何影响。总之,我们的结果表明,将磁性核壳纳米复合材料纳入生物材料中,能够实现人工替代物的组织工程,其机械性能可进行调节以匹配潜在目标组织的性能。从更广泛的角度来看,复合材料良好的生物相容性和磁行为可能对许多其他应用有益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索