Suppr超能文献

探究调控细胞行为的分子机制:磁材料和磁刺激对干细胞(神经发生)分化的影响。

Insights into the Molecular Mechanisms Regulating Cell Behavior in Response to Magnetic Materials and Magnetic Stimulation in Stem Cell (Neurogenic) Differentiation.

机构信息

Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.

Research Institute of the University of Bucharest (ICUB), 050063 Bucharest, Romania.

出版信息

Int J Mol Sci. 2023 Jan 19;24(3):2028. doi: 10.3390/ijms24032028.

Abstract

Magnetic materials and magnetic stimulation have gained increasing attention in tissue engineering (TE), particularly for bone and nervous tissue reconstruction. Magnetism is utilized to modulate the cell response to environmental factors and lineage specifications, which involve complex mechanisms of action. Magnetic fields and nanoparticles (MNPs) may trigger focal adhesion changes, which are further translated into the reorganization of the cytoskeleton architecture and have an impact on nuclear morphology and positioning through the activation of mechanotransduction pathways. Mechanical stress induced by magnetic stimuli translates into an elongation of cytoskeleton fibers, the activation of linker in the nucleoskeleton and cytoskeleton (LINC) complex, and nuclear envelope deformation, and finally leads to the mechanical regulation of chromatin conformational changes. As such, the internalization of MNPs with further magnetic stimulation promotes the evolution of stem cells and neurogenic differentiation, triggering significant changes in global gene expression that are mediated by histone deacetylases (e.g., HDAC 5/11), and the upregulation of noncoding RNAs (e.g., miR-106b~25). Additionally, exposure to a magnetic environment had a positive influence on neurodifferentiation through the modulation of calcium channels' activity and cyclic AMP response element-binding protein (CREB) phosphorylation. This review presents an updated and integrated perspective on the molecular mechanisms that govern the cellular response to magnetic cues, with a special focus on neurogenic differentiation and the possible utility of nervous TE, as well as the limitations of using magnetism for these applications.

摘要

磁性材料和磁刺激在组织工程(TE)中受到越来越多的关注,特别是在骨骼和神经组织重建方面。磁性被用于调节细胞对环境因素和谱系特异性的反应,其中涉及到复杂的作用机制。磁场和纳米颗粒(MNPs)可能会引发黏附斑的变化,这些变化进一步转化为细胞骨架结构的重组,并通过机械转导途径的激活对核形态和定位产生影响。磁刺激引起的机械应力会导致细胞骨架纤维的伸长、核骨架和细胞骨架(LINC)复合体连接蛋白的激活以及核膜变形,最终导致染色质构象变化的机械调节。因此,MNPs 的内化和进一步的磁刺激促进了干细胞的进化和神经发生分化,引发了全局基因表达的显著变化,这些变化是由组蛋白去乙酰化酶(如 HDAC5/11)介导的,以及非编码 RNA(如 miR-106b~25)的上调。此外,通过调节钙通道的活性和环磷酸腺苷反应元件结合蛋白(CREB)的磷酸化,暴露于磁环境对神经分化有积极影响。本综述提供了一个关于磁性信号调控细胞反应的分子机制的最新综合视角,特别关注神经发生分化以及神经组织工程的可能应用,以及将磁性用于这些应用的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3529/9916404/1a37e07ce1dd/ijms-24-02028-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验