Suppr超能文献

干细胞增殖与辐射或吸烟相关癌症风险之间缺乏相关性。

Lack of Correlation between Stem-Cell Proliferation and Radiation- or Smoking-Associated Cancer Risk.

作者信息

Little Mark P, Hendry Jolyon H, Puskin Jerome S

机构信息

Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Rockville, Maryland, United States of America.

Christie Medical Physics and Engineering, Christie Hospital and University of Manchester, Manchester, United Kingdom.

出版信息

PLoS One. 2016 Mar 31;11(3):e0150335. doi: 10.1371/journal.pone.0150335. eCollection 2016.

Abstract

BACKGROUND

A recent paper by Tomasetti and Vogelstein (Science 2015 347 78-81) suggested that the variation in natural cancer risk was largely explained by the total number of stem-cell divisions, and that most cancers arose by chance. They proposed an extra-risk score as way of distinguishing the effects of the stochastic, replicative component of cancer risk from other causative factors, specifically those due to the external environment and inherited mutations.

OBJECTIVES

We tested the hypothesis raised by Tomasetti and Vogelstein by assessing the degree of correlation of stem cell divisions and their extra-risk score with radiation- and tobacco-associated cancer risk.

METHODS

We fitted a variety of linear and log-linear models to data on stem cell divisions per year and cumulative stem cell divisions over lifetime and natural cancer risk, some taken from the paper of Tomasetti and Vogelstein, augmented using current US lifetime cancer risk data, and also radiation- and tobacco-associated cancer risk.

RESULTS

The data assembled by Tomasetti and Vogelstein, as augmented here, are inconsistent with the power-of-age relationship commonly observed for cancer incidence and the predictions of a multistage carcinogenesis model, if one makes the strong assumption of homogeneity of numbers of driver mutations across cancer sites. Analysis of the extra-risk score and various other measures (number of stem cell divisions per year, cumulative number of stem cell divisions over life) considered by Tomasetti and Vogelstein suggests that these are poorly predictive of currently available estimates of radiation- or smoking-associated cancer risk-for only one out of 37 measures or logarithmic transformations thereof is there a statistically significant correlation (p<0.05) with radiation- or smoking-associated risk.

CONCLUSIONS

The data used by Tomasetti and Vogelstein are in conflict with predictions of a multistage model of carcinogenesis, under the assumption of homogeneity of numbers of driver mutations across most cancer sites. Their hypothesis that if the extra-risk score for a tissue type is high then one would expect that environmental factors would play a relatively more important role in that cancer's risk is in conflict with the lack of correlation between the extra-risk score and other stem-cell proliferation indices and radiation- or smoking-related cancer risk.

摘要

背景

托马塞蒂和沃格尔斯坦最近发表的一篇论文(《科学》,2015年,第347卷,第78 - 81页)表明,自然癌症风险的差异在很大程度上可由干细胞分裂的总数来解释,且大多数癌症是偶然发生的。他们提出了一个额外风险评分,作为区分癌症风险中随机复制成分的影响与其他致病因素(特别是那些由外部环境和遗传突变导致的因素)的一种方法。

目的

我们通过评估干细胞分裂及其额外风险评分与辐射和烟草相关癌症风险的相关程度,来检验托马塞蒂和沃格尔斯坦提出的假设。

方法

我们对每年的干细胞分裂数据、一生中累积的干细胞分裂数据以及自然癌症风险数据拟合了多种线性和对数线性模型,其中一些数据取自托马塞蒂和沃格尔斯坦的论文,并使用当前美国终生癌症风险数据进行了补充,同时还包括辐射和烟草相关癌症风险数据。

结果

托马塞蒂和沃格尔斯坦收集的数据(在此处进行了补充)与通常观察到的癌症发病率的年龄幂次关系以及多阶段致癌模型的预测不一致,如果对驱动突变数量在不同癌症部位的同质性做出强假设的话。对托马塞蒂和沃格尔斯坦所考虑的额外风险评分及其他各种指标(每年的干细胞分裂数量、一生中累积的干细胞分裂数量)的分析表明,这些指标对当前可用的辐射或吸烟相关癌症风险估计值的预测能力很差——在所考虑的37个指标或其对数变换中,只有一个与辐射或吸烟相关风险存在统计学显著相关性(p < 0.05)。

结论

在大多数癌症部位驱动突变数量同质性的假设下,托马塞蒂和沃格尔斯坦所使用的数据与多阶段致癌模型的预测相冲突。他们的假设是,如果一种组织类型的额外风险评分较高,那么可以预期环境因素在该癌症风险中会发挥相对更重要的作用,但这与额外风险评分和其他干细胞增殖指标与辐射或吸烟相关癌症风险之间缺乏相关性相矛盾。

相似文献

1
Lack of Correlation between Stem-Cell Proliferation and Radiation- or Smoking-Associated Cancer Risk.
PLoS One. 2016 Mar 31;11(3):e0150335. doi: 10.1371/journal.pone.0150335. eCollection 2016.
2
An epidemiologic perspective on the stem cell hypothesis in human carcinogenesis.
Cancer Epidemiol. 2017 Oct;50(Pt A):132-136. doi: 10.1016/j.canep.2017.09.001.
3
4
Mathematical models of tissue stem and transit target cell divisions and the risk of radiation- or smoking-associated cancer.
PLoS Comput Biol. 2017 Feb 14;13(2):e1005391. doi: 10.1371/journal.pcbi.1005391. eCollection 2017 Feb.
5
A Critical Examination of the "Bad Luck" Explanation of Cancer Risk.
Cancer Prev Res (Phila). 2015 Sep;8(9):762-4. doi: 10.1158/1940-6207.CAPR-15-0229. Epub 2015 Jun 29.
7
Replicative random mutations as an unproven cause of cancer: A technical comment.
Mol Clin Oncol. 2016 Apr;4(4):497-499. doi: 10.3892/mco.2016.737. Epub 2016 Jan 25.
8
A research note regarding "Variation in cancer risk among tissues can be explained by the number of stem cell divisions".
F1000Res. 2016 Aug 22;5:2044. doi: 10.12688/f1000research.9448.2. eCollection 2016.
9
Cancer: Bad Luck or Punishment?
Biochemistry (Mosc). 2017 Jan;82(1):75-80. doi: 10.1134/S0006297917010084.
10
Cancer etiology: Variation in cancer risk among tissues is poorly explained by the number of gene mutations.
Genes Chromosomes Cancer. 2018 Jun;57(6):281-293. doi: 10.1002/gcc.22530. Epub 2018 Feb 19.

引用本文的文献

1
The strength of organ, tissue, and body field effects determines the frequency of all neoplasia.
Ann N Y Acad Sci. 2025 Apr;1546(1):11-22. doi: 10.1111/nyas.15306. Epub 2025 Mar 17.
2
A mathematical model for cancer risk and accumulation of mutations caused by replication errors and external factors.
PLoS One. 2023 Jun 14;18(6):e0286499. doi: 10.1371/journal.pone.0286499. eCollection 2023.
3
Stem cell replication, somatic mutations and role of randomness in the development of cancer.
Eur J Epidemiol. 2019 May;34(5):439-445. doi: 10.1007/s10654-018-0477-6. Epub 2019 Jan 8.
4
Osmolyte Induced Tumorigenesis and Metastasis: Interactions With Intrinsically Disordered Proteins.
Front Oncol. 2018 Aug 28;8:353. doi: 10.3389/fonc.2018.00353. eCollection 2018.
6
Mathematical models of tissue stem and transit target cell divisions and the risk of radiation- or smoking-associated cancer.
PLoS Comput Biol. 2017 Feb 14;13(2):e1005391. doi: 10.1371/journal.pcbi.1005391. eCollection 2017 Feb.
7
Cell Fusion in the War on Cancer: A Perspective on the Inception of Malignancy.
Int J Mol Sci. 2016 Jul 13;17(7):1118. doi: 10.3390/ijms17071118.

本文引用的文献

1
Substantial contribution of extrinsic risk factors to cancer development.
Nature. 2016 Jan 7;529(7584):43-7. doi: 10.1038/nature16166. Epub 2015 Dec 16.
3
Cancer risk: accuracy of literature.
Science. 2015 Feb 13;347(6223):729. doi: 10.1126/science.aaa6212. Epub 2015 Feb 5.
4
Cancer risk: many factors contribute.
Science. 2015 Feb 13;347(6223):728-9. doi: 10.1126/science.aaa6094. Epub 2015 Feb 5.
5
Cancer risk: tumors excluded.
Science. 2015 Feb 13;347(6223):727. doi: 10.1126/science.aaa6507. Epub 2015 Feb 5.
7
Only three driver gene mutations are required for the development of lung and colorectal cancers.
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):118-23. doi: 10.1073/pnas.1421839112. Epub 2014 Dec 22.
8
Ionizing radiation leads to the replacement and de novo production of colonic Lgr5(+) stem cells.
Radiat Res. 2013 Jun;179(6):637-46. doi: 10.1667/RR3253.1. Epub 2013 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验