Tello-Mijares Santiago, Flores Francisco
Departamento de Posgrado, Instituto Tecnológico Superior de Lerdo, Tecnológico 1555, Placido Domingo, 35150 Lerdo, DG, Mexico; Departamento de Posgrado, Instituto Tecnológico de la Laguna, Boulevard Revolución, Centro, 27000 Torreón, CO, Mexico.
Departamento de Posgrado, Instituto Tecnológico de la Laguna, Boulevard Revolución, Centro, 27000 Torreón, CO, Mexico.
Comput Math Methods Med. 2016;2016:5689346. doi: 10.1155/2016/5689346. Epub 2016 Mar 10.
The identification of pollen in an automated way will accelerate different tasks and applications of palynology to aid in, among others, climate change studies, medical allergies calendar, and forensic science. The aim of this paper is to develop a system that automatically captures a hundred microscopic images of pollen and classifies them into the 12 different species from Lagunera Region, Mexico. Many times, the pollen is overlapping on the microscopic images, which increases the difficulty for its automated identification and classification. This paper focuses on a method to segment the overlapping pollen. First, the proposed method segments the overlapping pollen. Second, the method separates the pollen based on the mean shift process (100% segmentation) and erosion by H-minima based on the Fibonacci series. Thus, pollen is characterized by its shape, color, and texture for training and evaluating the performance of three classification techniques: random tree forest, multilayer perceptron, and Bayes net. Using the newly developed system, we obtained segmentation results of 100% and classification on top of 96.2% and 96.1% in recall and precision using multilayer perceptron in twofold cross validation.
以自动化方式识别花粉将加速孢粉学的不同任务和应用,有助于开展气候变化研究、医学过敏日历编制以及法医学等工作。本文的目的是开发一个系统,该系统能自动捕捉一百张花粉微观图像,并将它们分类为来自墨西哥拉古内拉地区的12种不同物种。很多时候,花粉在微观图像上相互重叠,这增加了其自动识别和分类的难度。本文着重介绍一种分割重叠花粉的方法。首先,所提出的方法对重叠花粉进行分割。其次,该方法基于均值漂移过程(100%分割)以及基于斐波那契数列的H极小值腐蚀来分离花粉。因此,通过花粉的形状、颜色和纹理对其进行特征提取,以训练和评估三种分类技术的性能:随机森林、多层感知器和贝叶斯网络。使用新开发的系统,在双重交叉验证中,我们使用多层感知器获得了100%的分割结果,召回率和精确率分别高达96.2%和96.1%。