Suppr超能文献

使用薄血涂片的光学显微镜图像对疟疾感染阶段进行表征和分类的自动化系统。

Automated system for characterization and classification of malaria-infected stages using light microscopic images of thin blood smears.

作者信息

Das D K, Maiti A K, Chakraborty C

机构信息

School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.

出版信息

J Microsc. 2015 Mar;257(3):238-52. doi: 10.1111/jmi.12206. Epub 2014 Dec 18.

Abstract

In this paper, we propose a comprehensive image characterization cum classification framework for malaria-infected stage detection using microscopic images of thin blood smears. The methodology mainly includes microscopic imaging of Leishman stained blood slides, noise reduction and illumination correction, erythrocyte segmentation, feature selection followed by machine classification. Amongst three-image segmentation algorithms (namely, rule-based, Chan-Vese-based and marker-controlled watershed methods), marker-controlled watershed technique provides better boundary detection of erythrocytes specially in overlapping situations. Microscopic features at intensity, texture and morphology levels are extracted to discriminate infected and noninfected erythrocytes. In order to achieve subgroup of potential features, feature selection techniques, namely, F-statistic and information gain criteria are considered here for ranking. Finally, five different classifiers, namely, Naive Bayes, multilayer perceptron neural network, logistic regression, classification and regression tree (CART), RBF neural network have been trained and tested by 888 erythrocytes (infected and noninfected) for each features' subset. Performance evaluation of the proposed methodology shows that multilayer perceptron network provides higher accuracy for malaria-infected erythrocytes recognition and infected stage classification. Results show that top 90 features ranked by F-statistic (specificity: 98.64%, sensitivity: 100%, PPV: 99.73% and overall accuracy: 96.84%) and top 60 features ranked by information gain provides better results (specificity: 97.29%, sensitivity: 100%, PPV: 99.46% and overall accuracy: 96.73%) for malaria-infected stage classification.

摘要

在本文中,我们提出了一个用于疟疾感染阶段检测的综合图像特征描述与分类框架,该框架使用薄血涂片的显微图像。该方法主要包括利什曼染色血涂片的显微成像、降噪和光照校正、红细胞分割、特征选择,然后进行机器分类。在三种图像分割算法(即基于规则的算法、基于Chan-Vese的算法和标记控制分水岭方法)中,标记控制分水岭技术能更好地检测红细胞边界,特别是在重叠情况下。提取强度、纹理和形态水平的显微特征以区分感染和未感染的红细胞。为了获得潜在特征的子组,这里考虑使用F统计量和信息增益准则等特征选择技术进行排序。最后,对朴素贝叶斯、多层感知器神经网络、逻辑回归、分类与回归树(CART)、径向基函数神经网络这五种不同的分类器,针对每个特征子集,用888个红细胞(感染和未感染的)进行了训练和测试。对所提方法的性能评估表明,多层感知器网络在疟疾感染红细胞识别和感染阶段分类方面具有更高的准确率。结果表明,按F统计量排序的前90个特征(特异性:98.64%,敏感性:100%,阳性预测值:99.73%,总体准确率:96.84%)和按信息增益排序的前60个特征在疟疾感染阶段分类方面提供了更好的结果(特异性:97.29%,敏感性:100%,阳性预测值:99.46%,总体准确率:96.73%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验