Adams Mark Andrew, Turnbull Tarryn L, Sprent Janet I, Buchmann Nina
Centre for Carbon Water and Food, Faculty of Agriculture and Environment, University of Sydney, Brownlow Hill, 2570 NSW, Australia;
Plant Sciences, University of Dundee at James Hutton Institute, Dundee DD2 5DA, Scotland;
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4098-103. doi: 10.1073/pnas.1523936113. Epub 2016 Mar 30.
Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43-100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea-in distinct challenge to current theories that place the leaf nitrogen-Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea-gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen-in a variety of forms-enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates.
利用稳健的成对比较和一个全球数据集,我们发现,在非农业生态系统中,固氮植物(N2FP;主要是豆科植物加上一些放线菌根植物)每单位叶质量的氮浓度普遍高于其他植物(OP)(43%-100%)。这种差异在柯本气候区和生长形式中都存在,在湿润的热带地区和落叶被子植物中最为明显。即使在干旱气候下,尽管固氮作用对干旱敏感,但N2FP在每叶面积氮含量(Narea)方面大多比OP具有类似优势。我们还表明,对于大多数N2FP来说,光合作用的碳固定(Asat)和气孔导度(gs)与Narea无关——这对当前将叶片氮-Asat关系置于植物适应性和竞争能力解释核心的理论构成了明显挑战。在N2FP中,只有草本植物表现出与OP类似的Narea-gs关系,而木质N2FP的内在水分利用效率(WUEi;Asat/gs)与Narea呈正相关。叶片氮含量的增加(相对于OP)对豆科植物的其他进化优势属性有很大贡献,例如种子氮含量和对食草动物的防御能力。N2FP和OP在叶片氮含量上的明显差异的这些替代解释具有重要意义(例如,对于基于叶片氮和Asat关系的全球碳通量模型)。综合来看,更高的水分利用效率和多种形式的叶片氮含量提高了N2FP基因组的适应性和生存能力,特别是在干旱和半干旱气候中。