Berkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, 1 Cyclotron road, 94720 Berkeley, USA and Elettra - Sincrotrone Trieste, Strada Statale 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy.
Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.
Lab Chip. 2016 Apr 26;16(9):1644-1651. doi: 10.1039/c5lc01460c.
Water is a strong mid-infrared absorber, which has hindered the full exploitation of label-free and non-invasive infrared (IR) spectromicroscopy techniques for the study of living biological samples. To overcome this barrier, many researchers have built sophisticated fluidic chambers or microfluidic chips wherein the depth of the liquid medium in the sample compartment is limited to 10 μm or less. Here we report an innovative and simple way to fabricate plastic devices with infrared transparent view-ports enabling infrared spectromicroscopy of living biological samples; therefore the device is named "IR-Live". Advantages of this approach include lower production costs, a minimal need to access a micro-fabrication facility, and unlimited mass or waste exchange for the living samples surrounding the view-port area. We demonstrate that the low-cost IR-Live in combination with microfluidic perfusion techniques enables long term (>60 h) cell culture, which broadens the capability of IR spectromicroscopy for studying living biological samples. To illustrate this, we first applied the device to study protein and lipid polarity in migrating REF52 fibroblasts by collecting 2-dimensional spectral chemical maps at a micrometer spatial resolution. Then, we demonstrated the suitability of our approach to study dynamic cellular events by collecting a time series of spectral maps of U937 monocytes during the early stage of cell attachment to a bio-compatible surface.
水是一种强的中红外吸收剂,这阻碍了对无标记和非侵入性红外(IR)光谱显微镜技术的充分利用,使其无法用于研究活的生物样本。为了克服这一障碍,许多研究人员构建了复杂的流体室或微流控芯片,其中样品室中的液体介质深度限制在 10μm 或以下。在这里,我们报告了一种创新且简单的方法来制造具有红外透明视窗的塑料器件,从而能够对活的生物样本进行红外光谱显微镜检查;因此,该器件被命名为“IR-Live”。这种方法的优点包括更低的生产成本、对微制造设备的最小需求以及围绕视窗区域的活样本的无限质量或废物交换。我们证明,低成本的 IR-Live 与微流控灌注技术相结合,能够实现长期(>60 小时)细胞培养,从而拓宽了 IR 光谱显微镜用于研究活的生物样本的能力。为了说明这一点,我们首先应用该设备通过收集 2 维光谱化学图谱以微米级空间分辨率来研究迁移 REF52 成纤维细胞中的蛋白质和脂质极性。然后,我们通过收集 U937 单核细胞在细胞附着到生物相容表面的早期阶段的光谱图谱的时间序列,证明了我们的方法适用于研究动态细胞事件。